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Presumably the simplest model of chemical turbulence is proposed, for which the spatial degree
of freedom plays an important role. The concentration, as well as space and time, is discretized. As
in the real experiment a turbulent phase is found sandwiched by two ordered phases. In addition,
the model predicts a solitonlike phase. Thus the model can exhibit a variety of behaviors encoun-
tered in partial-differential-equation systems. It is also closely related to cellular automata.

PACS numbers: 05.45.+b, 82.20.Fd

In many physical and chemical systems most in-
teresting phenomena such as pattern formation, tur-
bulence, etc. , involve both the spatial and temporal
degrees of freedom. The recent reviving interest in
the collective behavior of coupled simple subsystems
stems from the quest for the role of spatial degrees of
freedom. Typical examples being studied are coupled
nonlinear oscillators, ' coupled nonlinear maps, 2 and
cellular automata. 3 These examples are closely related
to nonlinear partial differential equations (PDE) which
are often more realistic models for physical systems.
In these examples and PDE systems the coexistence of
chaos and ordered coherent structure (order in tur-
bulent states) has been given much attention.

For the coupled limit cycles, Kuramoto, Yamada,
and other researchers have been conducting extensive
studies for more than ten years. s 6 One of the most
important outcomes is the concept of chemical tur-
bulence. On the basis of the Kuramoto- Yamada-
Sivashinsky equation, they predicted the existence of a
turbulent phase due to instability induced by diffusion.
Notice that this turbulence is conceptually different
from the so-called chemical turbulence studied by

Hudson, Roux, and others. 7 In the latter case,
reagents are completely stirred, so that there is no spa-
tial degree of freedom.

Following the Kuramoto- Yamada prediction, Yama-
zaki, Oono, and Hirakawa8 performed an experimental
study of chemical turbulence using the Belousov-
Zhabotinsky reaction. 9 In their experiments the re-
gime of the reaction was so chosen that there was
purely periodic oscillation when the solution was
stirred well. Thus, if a chaotic phenomenon was ob-
served in a vessel without any stirring, it was solely
due to the existence of the spatial inhomogeneity. In
contrast to experiments in a stirred reactor, 7 the exper-
iments by Yamazaki, Oono, and Hirakawa had difficul-
ties due to the lack of stirring; carbon dioxide bubbles
generated by the reaction had to be kept on the wall of
the vessel, possible convective flow induced by the
exothermic reaction had to be suppressed by a slight
temperature gradient, etc. The rough phase diagram
constructed experimentally exhibits a disordered re-
gime characterized by rather abrupt changes of fre-
quencies and phases of the concentration oscillation.
The main feature of the diagram was that there

1985 The American Physical Society 2927



VOLUME 55, NUMBER 27 PHYSICAL REVIEW LETTERS 30 DECEMBER 1985

seemed to be a nonturbulent regime on both sides of
the turbulent region along the temperature axis. Since
the frequency of the reaction is much more sensitive
to the temperature than the diffusion rates, the higher
the temperature, the less effective is the diffusion.

The main purpose of the present Letter is to propose
presumably the simplest possible model of chemical
turbulence. The model is in a class of models whose
elements are discrete-state oscillators. We show the
existence of a large variety of behaviors in this model:
ordered phases, turbulence, solitons, etc. It seems
that the model proposed here can exhibit the whole ar-
ray of behaviors exhibited by (dissipative) PDE sys-

tems in general.
The essence of chemical turbulence is the linear

coupling of spatially distributed nonlinear oscillators.
The simplest way to represent a cyclic chemical oscilla-
tion is to use discrete concentration levels. It has
turned out that to have nontrivial behaviors three
discrete levels, M, 1, and 0, are sufficient, where M is
a positive integer. We also use discrete time and
space. Hence, in our simplest model at a given
discrete time, one of the discrete concentrations M, 1,
and 0 is assigned to each spatial cell. The rule of time
evolution must contain the effects of both the spatial
coupling and oscillation. Specifically, the rule of our
cellular model in one spatial dimension is given by

2'(n, t) =a[A (n+1, t)+A (n —I, t)]/2 + (1—n)A (n, t),

A(n, t+1) =E(A'(n, t)),
where A (n, t) is the concentration at the nth cell at
time t, a & [0, 1] is the spatial coupling constant, and
the function F is given by

1, if 1.5~x,
+(x) =' 0, if 0.5 ~ x ( 1.5,

M, if x(05.
(3)

The diffusion-type spatial coupling is represented by
(1), where the parameter a may be regarded as the
strength of diffusion. On the other hand, (2) with (3)
describes cyclic oscillation; when there is no diffusion,
i.e. , n=0, each cell makes an intrinsic cycle of 0-M-
1-0: This even mimics the time asymmetry of real
concentration oscillation in the Belousov-Zhabotinsky
reaction. We designate this rule as OM10. We can
make many variants of this rule, but this is the sim-
plest nontrivial one; the two-state OMO rule gives the
simplest oscillating model, but this gives us only or-
dered phases.

The phase diagram for the QM10 model is shown in
Fig. 1 and typical behaviors of spatiotemporal patterns
are shown in Fig. 2. Both are with stochastic initial
conditions. For large values of M one sees four dif-
ferent phases: three-cycle (3 phase), turbulent (T
phase), solitonlike (S phase), and second three-cycle
(3' phase) in this order as n is increased. The region
X is actually divided into many phases, many of which
are phases with several different cycles coexisting.
There are also some solitonlike phases. Since the
maximum concentration M is comparable to the other
concentration levels, 0 and 1, the interplay of the spa-
tial coupling and oscillation becomes complex in X.
Furthermore, real experiments were never conducted
in the regime where the amplitude of the oscillation is
small. Hence from here on we focus on large values
of M and the four phases mentioned above (3, T, S,

and 3' phases); we expect that phase diagrams with or-
dered phases separated by turbulent and solitonlike
phases would be general features of chemical tur-
bulence.

Our working definition of the turbulent phase is as
follows. The n th cell is said to be unpredictable if and
only if the Kolmogorov-Sinai entropy'0 of the se-
quence (A (n, t)) P 0 of the discrete concentration lev-
els at the cell n is positive. If the majority of the cells
are unpredictable, the phase is said to be nontrivial. If
the information in the initial concentration distribution
is significantly preserved, we say that the nontrivial
phase is turbulent.

Although an attempt to estimate the true
Kolmogorov-Sinai entropy (or the Shannon entropy

M

8

3
A =

2M
3

M+1
/

M 4-

0.2 0.4 0.6 0.8

FIG. 1. The phase diagram for the OM10 chemical tur-
bulence model defined by Eqs. (1)—(3). M is the peak value
of the autonomous oscillation, which is extended to real
values by an obvious modification of the rule, and o. is the
spatial coupling constant. The symbols 3, T, S, and 3'
denote, respectively, a periodic phase with period three, the
turbulent phase, the solitonlike phase, and a different
periodic phase with period three. The letter X collectively
denotes various phases which are not discussed in the text.
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FIG. 2. Typical spatiotemporal patterns of the OM10 model. The time flows from top to bottom of the figures. The hor-
izontal direction is the spatial coordinate. An empty cell actually contains M The symbols 3, T, S, and 3 denote respectively a
periodic phase with period three, the turbulent phase, the solitonlike phase, and a different periodic phase with period three.

per letter" if we regard the state sequence as a sen-
tence) is being made, here, for a preliminary study,
the Markov entropy of the sequence, '2 which is the
Kolmogorov-Sinai entropy of the empirical simple
Markov process obtained from the statistics of the ob-
served sequences, is used to measure the disorder of
the state sequence at a given cell. The spatial average
of this entropy is denoted by S,. The spatial disorder is
measured by the Markov entropy of the sequence of
states along the spatial axis: This entropy is denoted
by S,. Since our system has only three states, the
upper bound of S, and S, is log23=1.58496. . . bits.
In addition, as a result of the severe restriction on the
time sequence imposed by the structure of I', S, is
likely to be less than 0.7 bit. Thus asymptotic values
of S,= 0.5 bit and S,= 1.2 bits specify the turbulent
phase; 0& S, & 0.3 (bit) and S, =0.7 bit specify the
soliton phase; and S,=0 specifies the periodic ordered
phase. Since the number of solitons and their direc-
tions of motion strongly depend on the initial condi-
tion, so does the value of S, in the solitonlike phase.

Notice that our system is completely deterministic,
so that the temporal disorder is possible only if the
(spatial) information in the initial condition is convert-
ed to temporal information. This situation is exactly
the same as chaos in iterative maps. As an objective of
statistical mechanics, such discrete models and cellu-

lar automata can be regarded as measure-theoretic
dynamical systems. It is well known that any
measure-theoretic dynamical system (with finite entro-
py) is isomorphic to a shift dynamical system with a
finite number of symbols. '3

The boundaries of the four phases correspond to
changes of behaviors of fundamental configurations.
Consider a wall which divides two ordered spatial
domains. The spatial coupling is not strong enough if
n & 1/M, so that the two domains do not interact, and
the wall cannot move. This parameter region corre-
sponds to the ordered 3 phase. If I/M» n & 3/
(M+ 1), then the wall can move. Suppose we have a
domain with M's (M domain) and a domain with 0's
(0 domain) at a given time. The 0 domain invades the
M domain and the wall between them moves by one
spatial unit after three time steps. This parameter re-
gion contains the T and the S phases. If n~3/(M
+ 1), the coupling is too strong, so that the wall again
cannot move. Notice that although the 0 domain in-
vades the M domain at one time, the 0 domain
changes to an M domain and the M domain becomes a
1 domain at the next time step. Now the domain
which originally was the 0 domain is invaded by the
other domain so that the wall does not move after all.
Finally, the boundary of the T and the S phase is relat-
ed to the existence or nonexistence of self-
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organization. Consider an impurity in an M domain.
If n & 3/2M, then the impurity grows. This region,
1/M ~ n & 3/2M, corresponds to the T phase. On the
other hand, if n ~ 3/2M, the impurity disappears and
the medium becomes completely ordered. Therefore,
in the S phase, 3/2M ~ n & 3/(M+ 1), an initial ran-
dom spatial configuration is self-organized to ordered
domains. The domain walls behave like solitons as
seen in Fig. 2, S phase.

In the real experiment, 9 only the time sequence at
one space point was observed. Therefore, the experi-
ment was not designed to discriminate soliton states
from turbulent states. We expect solitonlike propaga-
tion of the spatial patterns in real experiments of
chemical turbulence. Indeed, we see a suggestive nu-
merical result in Kuramoto's work. '4

If one more state, 2, is added to the model with the
corresponding modification of F in Eq. (2) (OM210
model), we clearly observe the intermittent structure
in a turbulent phase. We also have an additional phase
where chaotic behavior seems to be induced by the ex-
istence of very many solitons. Thus there can be a tur-
bulent phase which may be understood in terms of
nonlinear modes.

The crucial difference between our model and the
model for excitable media, '5 which is also related to
the Belousov-Zhabotinsky reaction, is the nonex-
istence of the quiescent state in our model. In the
excitable-medium model the state 0 stays indefinitely
at 0 unless at least one M state appears in its neighbor-
hood. There is no turbulent phase in this model (at
least in one-space). Although there exist solitary
propagating waves, they disappear upon collisions.
Hence, these waves are distinctly different from the
solitons in our model where they go through each oth-
er upon collisions. It is easy to make interpolative
models of this excitable-medium model and our OM10
model; symbolically we denote them by the
OM1Q. . .Q model. According to our preliminary
study, increasing the period diminishes the width of
the turbulent region in the phase diagram.

As is mentioned above, our rule does not allow the
existence of the quiescent state. Thus as a "cellular
automaton, " our rule may be said to be illegal. 3 How-
ever, for any illegal rule, we can make an equivalent
legal rule which allows a quiescent state by suitably
redefining the time step and the cell neighborhood.
Hence, there is a "legal" cellular automaton which is
equivalent to the OM10 model. However, our rule,
the combination of the autonomous periodic rule and
the diffusionlike linear coupling, is a very special one,
so that there is an intriguing question on the algo-
rithmic properties of the model, for example, the
universality as an automaton.

In conclusion, we have proposed, presumably, the
simplest nontrivial model of chemical turbulence (or

coupled limit cycles) which can exhibit many
phenomena that we can observe in nonlinear partial
differential equations: turbulence, solitons, intermit-
tency, etc. We believe that it is promising to study
such a minimal model in order to understand the com-
plex behavior of real partial-differential-equation sys-
tems.
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