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where tr is the interface stiffness, y(x) is the location
of the interface, and the correlations in the random
potential are

( V(x,y) V(x',y')) = 55(x —x') h(y —y').

This is the continuum version of Kardar's recursion
relation for the weights in the lattice solid-on-solid
(SOS) model. If we define u (x,y) = [BF(x,y)/By]/o-,
where the free energy is F (x,y) = —ka T ln W (x,y),
Eq. (2) becomes
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which is Burgers's equation' with a diffusion constant
or damping proportional to T and conservative random
forcing, BV/By. When (4) is viewed as a nonlinear
diffusion equation, x serves as the time coordinate and

y as the space coordinate, and u (x,y) is the drift veloc-
ity. That u(x,y) is indeed a velocity, which scales as
distance over time (y/x), is necessary because of the
Galilean invariance of (4). The free energy F(x,y)
has a term that is linear in x. Since u = BF/By, howev-
er, the fluctuations in F about this average value scale
as y /x. The fluctuations in F scale as x" and y scales
as x~, and so this implies X = 2f —1. This exponent re-
lation was pointed out by Huse and Henley3 and can
also be seen by examining the gradient-squared term
in the Hamiltonian (1).

The forced Burgers's equation (4) obeys a
fluctuation-dissipation theorem as a consequence of
which its steady-state distribution is simply

P {u (x,y) }~ exp [ ——,
'

XJ~ dy u'(x, y) ], (5)

Huse, Henley, and Fisher Respond: Here we show
how the exponents (= —,

' for the transverse fluctua-
tions in interface position and X = —, for the fluctua-
tions in the free energy can be derived exactly for an
interface in a random potential in two dimensions at
any temperature. We do this by relating the problem
of the interface to the damped Burgers's equation' in
one dimension with random forcing, the scaling
behavior of which has been analyzed by Forster, Nel-
son, and Stephen2

In the continuum limit with Hamiltonian3

H = J/dx[ —,
' tr(By/Bx)2+ V(xy)], (1)

the weight W(x,y) of a path or interface ending at
(x,y) satisfies the equation

with )t= ak&-T/A. This invariant distribution implies
that

([F(x,y) —F (x,y') ]') = ~ly —y'I/it,

and, hence, 2X= (. The two exponent relations to-
gether dictate (= —', and X = —, , which are equivalent to
the exponents derived by Forster, Nelson, and
Stephen for (4). The analysis of Forster, Nelson, and
Stephen implies that, for a given X, the same fixed
point governs the behavior of (4) at large distance and
time scales for all 4, including in the limit
T 0, 6 0 at fixed X. This limiting case of the
Burgers's equation with neither forcing nor damping is
exactly integrable. ' The scaling exponents discussed
above were first obtained by Burgers, ' who studied the
evolution in this integrable limit of random initial con-
ditions with a distribution similar to (5).

Kardar and Nelson recently solved a model of
parallel interfaces with disorder and hard-core repul-
sion, from which they indirectly obtained the exact ex-
ponents ( and X. A similar scaling behavior has also
been found by van Beijeren, Kutner, and Spohn, 7 for a
hard-core lattice-gas model of one-dimensional con-
duction.

David A. Huse
Christopher L. Henley"
Daniel S. Fisher

ATILT Bell Laboratories
Murray Hill, New Jersey 07974

Received 30 September 1985
PACS numbers: 75.60.Ch, 05.50.+q, 75.10.Hk, 82.65.Dp

&'~Present address: LASSP, Cornell University, Ithaca,
N.Y. 14853

tJ. M. Burgers, The Nonlinear Diffusion Equation (Reidel,
Boston, 1974).

D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev.
A 16, 732 (1977).

D. A. Huse and C. L. Henley, Phys. Rev. Lett. 54, 2708
(1985).

4M. Kardar, preceding Comment [Phys. Rev. Lett. 55,
2924(C) (1985)l.

sU. Deker and F. Haake, Phys. Rev. A 11, 2043 (1975).
Note that if one makes the natural extension of (1), describ-
ing a string in a random potential, to higher dimension, the
fluctuation-dissipation theorem no longer holds for the cor-
responding generalization of the forced Burgers's equation
(4) and there is not a known invariant distribution. See also
Ref. 2.

M. Kardar and D. R. Nelson, Phys. Rev. Lett. 55, 1157
(1985).

7H. Van Beijeren, R. Kutner, and H. Spohn, Phys. Rev.
Lett. 54, 2026 (1985).

2924


