Huse, Henley, and Fisher Respond: Here we show 'how the exponents $\zeta = \frac{2}{3}$ for the transverse fluctuations in interface position and $X = \frac{1}{3}$ for the fluctuations in the free energy can be derived exactly for an interface in a random potential in two dimensions at any temperature. We do this by relating the problem of the interface to the damped Burgers's equation¹ in one dimension with random forcing, the scaling behavior of which has been analyzed by Forster, Nelson, and Stephen²

In the continuum limit with Hamiltonian³

$$
H = \int dx \left[\frac{1}{2} \sigma (\partial y / \partial x)^2 + V(x, y) \right],
$$
 (1)

the weight $W(x,y)$ of a path or interface ending at (x,y) satisfies the equation

$$
\frac{\partial W(x,y)}{\partial x} = \frac{k_B T}{2\sigma} \frac{\partial^2 W(x,y)}{\partial y^2} + \frac{1}{k_B T} V(x,y) W(x,y), \quad (2)
$$

where σ is the interface stiffness, $y(x)$ is the location of the interface, and the correlations in the random potential are

$$
\langle V(x,y) V(x',y') \rangle = \Delta \delta(x-x') \delta(y-y'). \tag{3}
$$

This is the continuum version of Kardar's⁴ recursion relation for the weights in the lattice solid-on-solid (SOS) model. If we define $u(x,y) = \left[\frac{\partial F(x,y)}{\partial y}\right] / \sigma$, where the free energy is $F(x,y) = -k_B T \ln W(x,y)$, Eq. (2) becomes

$$
\frac{\partial u(x,y)}{\partial x} = \frac{k_B T}{2\sigma} \frac{\partial^2 u(x,y)}{\partial y^2} - u(x,y) \frac{\partial u(x,y)}{\partial y} - \frac{1}{\sigma} \frac{\partial V(x,y)}{\partial y}, \quad (4)
$$

which is Burgers's equation¹ with a diffusion constant or damping proportional to T and conservative random forcing, $\partial V/\partial y$. When (4) is viewed as a nonlinear diffusion equation, x serves as the time coordinate and y as the space coordinate, and $u(x,y)$ is the drift velocity. That $u(x,y)$ is indeed a velocity, which scales as distance over time (y/x) , is necessary because of the Galilean invariance of (4). The free energy $F(x,y)$ has a term that is linear in x. Since $u = \frac{\partial F}{\partial y}$, however, the fluctuations in F about this average value scale as y^2/x . The fluctuations in F scale as x^{λ} and y scales as x^{ζ} , and so this implies $\chi = 2\zeta - 1$. This exponent relation was pointed out by Huse and Henley³ and can also be seen by examining the gradient-squared term in the Hamiltonian (1).

The forced Burgers's equation (4) obeys a fluctuation-dissipation theorem⁵ as a consequence of which its steady-state distribution is simply

$$
P\{u\left(x,y\right)\}\propto\,\exp\bigl\{-\tfrac{1}{2}\lambda\int dy\,u^2(x,y)\,\bigr\},\qquad\qquad(5)
$$

with $\lambda = \sigma k_B T/\Delta$. This invariant distribution implies that

$$
\langle [F(x,y) - F(x,y')]^2 \rangle = \sigma |y - y'| / \lambda, \qquad (6)
$$

and, hence, $2x = \zeta$. The two exponent relations together dictate $\zeta = \frac{2}{3}$ and $\chi = \frac{1}{3}$, which are equivalent to the exponents derived by Forster, Nelson, and Stephen² for (4) . The analysis of Forster, Nelson, and Stephen² implies that, for a given λ , the same fixed point governs the behavior of (4) at large distance and time scales for all Δ , including in the limit $T \rightarrow 0$, $\Delta \rightarrow 0$ at fixed λ . This limiting case of the Burgers's equation with neither forcing nor damping is exactly integrable.¹ The scaling exponents discussed above were first obtained by Burgers,¹ who studied the evolution in this integrable limit of random initial conditions with a distribution similar to (5).

Kardar and Nelson $⁶$ recently solved a model of</sup> parallel interfaces with disorder and hard-core repulsion, from which they indirectly obtained the exact exponents ζ and χ . A similar scaling behavior has also been found by van Beijeren, Kutner, and Spohn, 7 for a hard-core lattice-gas model of one-dimensional conduction.

David A. Huse Christopher L. Henley $^(a)$ </sup> Daniel S. Fisher AT&T Bell Laboratories Murray Hill, New Jersey 07974

Received 30 September 1985 PACS numbers: 75.60.Ch, 05.50.+q, 75.10.Hk, 82.65.Dp

(a) Present address: LASSP, Cornell University, Ithaca, N.Y. 14853

¹J. M. Burgers, The Nonlinear Diffusion Equation (Reidel, Boston, 1974).

²D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A 16, 732 (1977).

D. A. Huse and C. L. Henley, Phys. Rev. Lett. 54, 2708 (1985).

4M. Kardar, preceding Comment [Phys. Rev. Lett. 55, 2924(C) (1985)l.

 $5U$. Deker and F. Haake, Phys. Rev. A 11, 2043 (1975). Note that if one makes the natural extension of (1), describing a string in a random potential, to higher dimension, the fluctuation-dissipation theorem no longer holds for the corresponding generalization of the forced Burgers's equation (4) and there is not a known invariant distribution. See also Ref. 2.

⁶M. Kardar and D. R. Nelson, Phys. Rev. Lett. 55, 1157 (1985).

7H. Van Beijeren, R. Kutner, and H. Spohn, Phys. Rev. Lett. 54, 2026 (1985).