Roughening By Impurities At Finite Temperatures

In a recent Letter¹ Huse and Henley examined roughening of interfaces by random coupling energies. In particular, on the basis of numerical simulations, they concluded that at zero temperature, in two dimensions, fluctuations y of an interface scale with its length x as $y \sim x^{\zeta}$, with $\zeta \simeq \frac{2}{3}$. Also the fluctuations in energy gain ΔE of the rough wall from the weaker bonds scale as x^{χ} with $\chi \simeq \frac{1}{3}$. Do these exponents (presumably universal) apply to a different model of interfaces; and are they applicable to finite temperatures (in principle, entropy effects could alter the scaling)? Numerical simulations at finite temperature in-

 $W(x+1,y) = \exp[-\mu(x,y)][W(x,y) + \gamma W(x,y-1)]$

with $W(0,y) = \delta_{\gamma,0}$. For each realization of randomness, the T = 0 optimal value op(y(x)) corresponds to the path terminating at x with the largest weight, while at finite T the mean $\langle y(x) \rangle$ is obtained by averaging over the weights W(x,y). Numerical results are plotted in Fig. 1 for $\sigma^2 = \frac{5}{6}$, with $\gamma = 1.0$ and $\gamma = 0.1$. The quenched random averaging in $y_0 = \overline{[op(y(x))^2]}^{1/2}$ and $y_m = \overline{[\langle y(x) \rangle^2]}^{1/2}$ is performed by summing over 400 different realizations. Dashed lines are fits by power laws $y \sim x^{\zeta}$. The exponents for y_0 and y_m are 0.64 and 0.67 for $\gamma = 1.0$, and 0.62 and 0.67 for $\gamma = 0.1$. They are in agreement with $\zeta \simeq \frac{2}{3}$ of Ref. 1 suggesting that ζ is indeed universal and applicable to finite T. In contrast to nonrandom systems, fluctuations are smaller at finite T (although the scaling is the same). Since there are more paths to smaller y, entropy effects tend to reduce $\langle y \rangle$. Therefore, roughness

FIG. 1. Fluctuations of an impurity-roughened wall.

dicate that the answers are in the affirmative.

Interfaces consider here are defined on a lattice, and at zero temperature, and in the absence of impurities are straight lines through y = 0. At a finite temperature *T* or because of impurities the interface fluctuates, and its configuration is described by the integer heights y(x). Overhangs and islands are ignored, and only configurations with |y(x+1) - y(x)| = 0 or 1 are allowed (the solid-on-solid or SOS model). |y(x+1) - y(x)| = 1 corresponds to a broken bond in the *x* direction, with an energy cost E_0 (a Boltzman weight $\gamma = e^{-E_0}$). The bonds $\mu(x,y)$ in the *y* direction are independent random variables of variance σ^2 . The interface begins at x = 0, y = 0; and at finite *T*, the total weight W(x,y) of paths connecting (0,0) to (x,y) is calculated recursively from

) + $\gamma W(x, y + 1)$],

of the interface at short length scales is smoothed out at finite T. At infinite temperatures, disorder $(\sigma \sim 1/T)$ disappears, and fluctuations characteristic of a uniform interface $(\langle y \rangle = 0, \langle y^2 \rangle = x)$ are expected. The nonrandom exponent of $\frac{1}{2}$ describes smoother fluctuations. Dimensional arguments² indicate that crossover to impurity-dominated roughening occurs at length scales larger than $x_d \simeq \gamma/\sigma^2$. Also important are the fluctuations in energy gain $\Delta E(x)$ from random bonds. Huse and Henley find $\Delta E(x) \sim x^{\chi}$, with $\chi \simeq \frac{1}{3}$. A similar exponent was obtained for the optimal paths in the above SOS model. The analogue of $\Delta E(x)$ at finite T is the constrained free energy $\Delta F(x,y)$ for paths from (0,0) to (x,y). Again $\Delta F(x, \langle y \rangle)$ scales as x^{χ} with $\chi \simeq \frac{1}{3}$; i.e., the free energy is dominated by the energy, and entropy effects are secondary. Extending the results to finite T is actually a necessary step in an indirect proof presented elsewhere² that the exponent ζ is exactly $\frac{2}{3}$, and provides a connection with the direct proof in the following Comment.

This research was supported by the National Science Foundation through Grant No. DMR 82-07431. The author acknowledges conversations with B. Halperin and D. Nelson.

Mehran Kardar

Department of Physics Harvard University Cambridge, Massachusetts 02138

(Received 3 July 1985)

PACS numbers: 75.60.Ch, 05.50.+q, 75.10.Hk, 82.65.Dp

¹D. A. Huse and C. L. Henley, Phys. Rev. Lett. **54**, 2708 (1985).

²M. Kardar and D. R. Nelson, Phys. Rev. Lett. **55**, 1157 (1985).