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Roughening By Impurities At Finite Tempera-
tures

In a recent Letter' Huse and Henley examined
roughening of interfaces by random coupling energies.
In particular, on the basis of numerical simulations,
they concluded that at zero temperature, in two
dimensions, fluctuations y of an interface scale with its
length x as y —x~, with (= —,'. Also the fluctuations
in energy gain AE of the rough wall from the weaker
bonds scale as x" with X= —,'. Do these exponents
(presumably universal) apply to a different model of
interfaces; and are they applicable to finite tempera-
tures (in principle, entropy effects could alter the scal-
ing)? Numerical simulations at finite tern erature in-P
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FIG. 1. Fluctuations of an impurity-roughened wall.

with W(0,y) = 5 o. For each realization of random-
ness, the T = 0 optimal value op(y (x) ) corresponds to
the path terminating at x with the largest weight, while
at finite T the mean (y(x)) is obtained by averaging
over the weights W(x,y). Numerical results are plot-
ted in Fig. 1 for a.2= —,', with y =1.0 and y =0.1. The

2 &/2
quenched random averaging in yo = [op(y(x)) ]

2 r/2.
and y = [(y(x))2] is performed by summing over
400 different realizations. Dashed lines are fits by
power laws y —xt. The exponents for yo and y are
0.64 and 0.67 for @=1.0, and 0.62 and 0.67 for
y=0.1. They are in agreement with ( = —,

' of Ref. 1

suggesting that ( is indeed universal and applicable to
finite T. In contrast to nonrandom systems, fluctua-
tions are smaller ai finite T (although the scaling is the
same). Since there are more paths to smaller y, entro-
py effects tend to reduce (y). Therefore, roughness

dicate that the answers are in the affirmative.
Interfaces consider here are defined on a lattice, and

at zero temperature, and in the absence of impurities
are straight lines through y=0. At a finite tempera-
ture T or because of impurities the interface fluctu-
ates, and its configuration is described by the integer
heights y(x). Overhangs and islands are ignored, and
only configurations with ~y (x+ 1) —y (x) ~

= 0 or 1 are
allowed (the solid-on-solid or SOS model). ~y(x+ I)
—y(x) ~

=1 corresponds to a broken bond in the x
direction, with an energy cost Eo (a Boltzman weight

y = e 0). The bonds p, (x,y ) in the y direction are in-
dependent random variables of variance o-2. The in-
terface begins at x = 0, y = 0; and at finite T, the total
weight W(x,y) of paths connecting (0,0) to (x,y) is
calculated recursively from

+ y W(x,y+ 1)],

of the interface at short length scales is smoothed out
at finite T. At infinite temperatures, disorder
(cr —1/T) disappears, and fluctuations characteristic
of a uniform interface ((y) =0, (y2) = x) are expect-
ed. The nonrandom exponent of —,

' describes smooth-
er fluctuations. Dimensional arguments2 indicate that
crossover to impurity-dominated roughening occurs at
length scales larger than x„=y/a- . Also important
are the fluctuations in energy gain EE(x) from ran-
dom bonds. Huse and Henley find AE(x) —x", with

A similar exponent was obtained for the op-
timal paths in the above SOS model. The analogue of
b, E(x) at finite T is the constrained free energy
b, F(x,y) for paths from (0,0) to (x,y). Again
b, F(x, (y) ) scales as x" with X = —,'; i.e., the free en-

ergy is dominated by the energy, and entropy effects
are secondary. Extending the results to finite T is ac-
tually a necessary step in an indirect proof presented
elsewhere2 that the exponent ( is exactly —, , and pro-
vides a connection with the direct proof in the follow-
ing Comment.
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