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Density of States for a Two-Dimensional Penrose Lattice: Evidence of a Strong
Van Hove Singularity
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The density of states for a tight-binding Hamiltonian on a two-dimensional Penrose lattice is

computed numerically by the continued fraction recursion method. The result shows evidence of a
strong Van Hove —type singularity which is remarkable for a system possessing no long-range
periodic translational order. By a method of finite-size scaling extrapolation the exponent o. and

amplitude C where p (E) —CE are estimated to be n = 0 90 + 0 05 and C = exp(3 8 + 0 2).

PACS numbers: 71.20.+c, 71.25.Mg

Considerable excitement has been generated in re-
cent months as a result of the experiments of Shecht-
man et al. ' who gave the first crystallographic data for
the existence in nature of quasicrystals (Als6Mnt4).
These systems are characterized by a lack of long-
range periodic translational order (and hence no Bra-
vais lattice) but have long-range bond orientational or-
der, a canonical example of which is perhaps the pat-
tern of Penrose tilings in two dimensions (2D) (Fig.
1). Motivated by this evidence, several authors have
begun to study their structural and electronic proper-
ties. 2 3 Of particular importance is the presence of
sharp Bragg spots in the diffraction pattern in the ab-
sence of long-range periodic translational symmetry as
demonstrated by Levine and Steinhardt. 2 In this
Letter I wish to report on the first results for the den-
sity of states of a tight-binding Hamiltonian on such a
lattice in 2D. My viewpoint is more closely related to
that adopted in earlier work on topologically disor-
dered random networks, e.g. , in studies of amorphous
silicon, 4 in contrast to the viewpoint of other authors
who have made use of stereographic projections of
curved-space ideal crystals.

In particular, I wish to address the question of possi-
ble true Van Hove —type singularities in the distribu-
tion for this lattice, since it is perhaps common folk-
lore that disorder tends to round off any Van Hove
singularities of a pure crystal as is indeed indicated by
various numerical calculations. ~ There is, however, a
high degree of orientational order on the Penrose lat-
tice which may lead to features in the density of states
arising from its peculiar self-similarity properties. It is
well known that (at least with s electrons) the proper-
ties of the Hamiltonian are given entirely by the con-
nectivity matrix, 6 on which we shall focus our main at-
tention. In this context the lattice is especially in-
teresting as it contains n =3-, 4-, 5-, 6-, and 7-fold
coordinated sites, and hence differs somewhat from
fixed coordinated random networks, whose densities
are not random, and is probably connected by factors
of the golden ratio. 7 Here we will be particularly in-

terested in the local density of states (LDOS)

p, (E) = g„g„(i)P„(i)h(E—e„),
at a particular n fold coo-rdinated site as well as its ther-
modynamic average

the global density of states (GDOS).
The absence of odd-membered rings, however, al-

lows division into two sublattices, and by well-known
arguments4 s we deduce that the LDOS and GDOS are
even functions of E. Unfortunately, in spite of the
high degree of symmetry, the problem is probably not
amenable to an exact analytic solution on the infinite
lattice. After examining various procedures I have
adopted the widely used recursion method of Hay-
dock, Heine, and Kelly9 ' which offers fast computa-

FIG. 1. A section in the bulk of a computer-generated
cluster of a 2D Penrose lattice (3806 atoms) using the algo-
rithm of Mackay (Ref. 12). The algorithm can deflate inde-
finitely to any number of generations. LDOS for the atoms
marked with a circle and a cross are shown in Fig. 3.

1985 The American Physical Society 2915



VOLUME 55, NUMBER 26 PHYSICAL REVIEW LETTERS 23 DECEMBER 1985

tional speed and, above all, reliability. Technical de-
tails concerning the implementation of the recursion
procedure to this problem are best deferred to a later
publication. " Briefly, the continued-fraction expan-
sion of the Green's function, which is exact for a finite
system, is truncated in the infinite lattice. Information
on the connectivity of the lattice is given by a nearest-
neighbor table generated by the algorithm of Mackay'2
(Fig. 1). A small imaginary part y is added to the en-
ergy to smooth out the distribution, but I have avoided
using terminator functions, which are unreliable for
this problem when we have no prior knowledge of the
shape of the distribution and band edges. To assess
the quality of this procedure we first check the recur-
sion algorithm on the three typical 2D lattices, i.e., for
the square, triangular, and honeycomb nets (Fig. 2),
for which exact results are well known. "'3'4 Their
distributions each have individual characteristics which
are useful tests and can be expressed in closed form in
terms of complete elliptic integrals of the first kind
~(k)."

The numerical calculations of Fig. 2 were done for
over 3000 atomic sites taking 32 sec of central-
processing-unit time on a Cyber machine but only 6
sec on the Cray without special efforts for vectoriza-
tion. However, on the Penrose tiles most of the com-
puting time is employed in generating the atomic clus-
ter, which takes over 200 sec for about 3800 atoms,
the main limitation here coming from memory size
rather than computing speed. Looking at Fig. 2 we can
see that the finite-size effects reduce and round off the
logarithmically divergent Van Hove singularities'6 and
sharp band edges, the usual feature of a numerical cal-
culation. Although the logarithmic singularity is often
more difficult to observe in a finite system, we see,
nevertheless, that the various peaks are well resolved
in these calculations. These points are to be noted in
the interpretation of the data (Fig. 3) which are the
main results of this Letter. The choice of initial vector
is crucial in all of these calculations. For the LDOS we
place an orbital at the chosen site well in the interior of
the cluster and ensure that the continued fraction is
not extended beyond 2L or 3L, where L equals the
square root of the number of atoms. For the GDOS
we choose an initial vector with all elements as random
variables chosen from a Gaussian distribution.

However, in this method of averaging for the GDOS
care has to be taken in the interpretation of the data.
The effect of open boundaries with dangling bonds, an
unavoidable feature of the deflation algorithm, might
introduce spurious small peaks near the band edges
that are not genuine features of the bulk. The alterna-
tive of directly averaging over many atoms by repeat-
edly computing a LDOS is computationally incon-
venient and will still not remove the effect of boun-
daries. In Fig. 3(a) we see two sharp peaks for the
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FIG. 2. Comparison of numerical and exact results for
the LDOS on the (a) square, (b) triangular, and (c) honey-
comb lattices. Numerical calculations were done for 3271
atoms with free boundary conditions and a truncation of the
continued fraction at 200 levels with y = 0.1.

LDOS on the threefold coordinated site marked with a
circle in Fig. 1. Such sites are very few in number. On
a typical network of 1500 atoms fewer than ten such
atoms have been located (by random selection) in the
bulk. The majority of threefold coordinated sites, like
most of such sites shown in the cluster of Fig. 1, pro-
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vide only a single sharp peak. I have also examined
the LDOS on other n-fold (n ) 3) coordinated sites.
The scarcity of such sites on the finite lattice again in-
troduces boundary difficulties that must be carefully

E/t

FIG. 3. (a) LDOS at the threefold coordinated site
marked with a circje in Fig. 1, which shows two peaks. (b)
LDOS at the threefold coordinated site marked with a cross
in Fig. 1, which shows one peak. (c) Solid curves are raw
data for the GDOS using the average technique discussed in
the text. The dotted curve is the predicted GDOS without
boundary effects and noise. Heavy curves are for 200 levels
with y =0.1 and light curves are for 100 levels with y =0.15.

handled. I found no evidence of sharp peaks compar-
able to those above. Finally, using the averaging tech-
nique discussed above, I show the GDOS of a cluster
of 3806 atoms [Fig. 3(c)]. The full curves are the raw
data while the dotted plot is my prediction. On the
basis of the points mentioned above we do not expect
that the smaller peaks near the band edges are genuine
features of the bulk. The center peak, however, ap-
pears to persist unrenormalized. This evidence strong-
ly suggests that the two peaks of Fig. 3(a) do not sur-
vive the thermodynamic averaging process over the
whole system. By comparison with previous test
results (Fig. 2) we clearly see evidence that the singu-
larities of Figs. 3(a)—3(c) are more strongly divergent,
a remarkable feature. Furthermore, I have explicitly
diagonalized numerically the connectivity matrix of
the first-generation deflationary pattern of 29 atoms.
Only three states belong to zero energy, adding to the
evidence that the singularity observed is a true topo-
logical effect of the infinite cluster. The interplay
between a finite y and system size make the process of
obtaining a finite-size scaling estimate of the exponent
tricky. The following method which I used, although
crude, has been tested on the 1D chain and yields the
correct result to within 10/0 for a 1000-atom system.
This is the first time a finite-size scaling extrapolation
has been used with the recursion method. The pro-
cedure is to plot the peak height of the global density
of states versus lny over a range that does not make
the distribution noisy. The slope of this plot gives the
exponent n(N) and the intercept gives lnC(N) where
C is the amplitude. This procedure is repeated against
1/N and extrapolating to zero gives an estimate:
n = 0.90 + 0.05 lnC = —3.8 + 0.2. No attempt will be
made at this stage to assess the consequences of these
results. Clearly, they suggest strongly the need for an
extension of current concepts of solid-state physics to
quasiperiodic structures. Extensions to more dimen-
sions and an investigation of transport properties like
the conductivity will be published elsewhere.
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