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Novel Surface Phase Transition in Nematic Liquid Crystals:
Wetting and the Kosterlitz-Thouless Transition
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The growth of nematic films near a wall close to the nematic-isotropic transition is studied for
planar boundary conditions. If the nematic phase wets the wall, near the onset of bulk nematic
behavior the nematic film near the wall is in a Kosterlitz-Thouless low-temperature phase. The
transition to this phase can be a defect-unbinding transition or a first-order transition, or two transi-
tions may occur. A surface phase diagram is drawn as a function of temperature, bulk ordering
field, and surface ordering field.

PACS numbers: 64.70.Ew, 61.30.Gd, 68.10.Cr
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where n is a molecular orientation. At the N-I transi-
tion there is a first-order phase transition between an

There has been considerable interest over the last
few years in the development of surface order in
nematic liquid crystals, and in particular in the ques-
tion of whether the order near an interface might
differ quantitatively or qualitatively from the order in
the bulk. ' 7 This interest arises both from the
relevance of surface nematic order to visual display
systems and for fundamental reasons connected with
the resurgence of interest in surface phase transitions
and wetting phenomena. 8 '0

We have studied the development of nematic order
at a wall-nematogen interface as the temperature is re-
duced towards the bulk nematic-isotropic (N-I) phase
transition at TNt. Other investigators have considered
this problem for homeotropic (director normal to the
wall) or homogeneous (director given by an easy axis
in the plane of the wall) boundary conditions. t 2 4 s "
We study here the case of planar boundary conditions
(the directions in the plane of the wall form a degen-
erate set of easy axes), which, although experimentally
somewhat exotic and hard to achieve, provides a sur-
face phase diagram with some qualitatively new
features which are of particular interest in the more
general context of the statistical mechanics of surfaces.

The simplest nematic order parameter is a traceless
symmetric tensor which, in the coordinates of its prin-
cipal axes, may be written as

Q;,.= ,' (3n;n, —5;,)—
r, =„f P(z) dz. (2b)

As discussed elsewheres 6 s " 's the development of
surface order is closely related to the question of
whether the nematic wets the wall. Complete wetting
of the wall by the nematic phase corresponds to
I p, I g ~ as T T~+p, and complete wetting of the
wall by the paranematic (isotropic) phases corresponds
to rp I g as T TNp (TNt).

We have used mean-field theory, supplemented by

isotropic phase (Q=P=0) and a uniaxial nematic
phase ( Q& O,P = 0). However, this phase transition is
affected by magnetic fields. '2'3 In the context of this
work it is useful to recall that if the nematogen has
negative diamagnetic anisotropy, and the magnetic
field is in the z direction, the high-temperature
(paranematic, P) phase has a small but nonzero
Q & 0, whereas the low-temperature (N) phase has a
broken symmetry in the x-y plane and is biaxial
(QaO, Pa0). The temperature of the phase transi-
tion is increased by the applied field, but the transition
remains first order until at a critical field there is a tri-
critical point beyond which the transition is continu-
ous.

We consider the surface phase diagram of such a
system placed in the region z ) 0, with an extra sur-
face ordering field also providing a degenerate set of
easy axes in the x-y plane. From an experimental
point of view we are interested in the case of zero bulk
field. However, consideration of the more general
phase diagram provides both a context in which the
results may be interpreted and an example of a system
with interesting surface behavior. "'~ Surface order
may usefully be discussed in terms of the parameters

rg= — I Q(z) dz,4 p
(2a)
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general arguments on the way in which mean-field
theory results are affected by fluctuations. At zero
field we find the following, depending on the strength
of the surface field: (a) I & remains finite and I"p=0
as T TNt. (b) I & ~, I i ~ as T Tz+&', there
is a first-order phase transition at Ts & TNi at which
there are discontinuities in I ~ and I p, and for
T& Ts, I j =0. (c) I &, I j as T TNt,
there is a continuous surface phase transition at
Ts& & TNt above which I p=0, followed by a first-
order surface phase transition at Ts2 ( Ts~ & Ts2
& TNt). (d) 10 ~, I j ~ as T TN+t, there is

merely a continuous surface phase transition at Ts
above which I' j = 0. The first-order transitions are the
boundary transitions predicted by Sheng, '~ now recog-
nized as prewetting transitions. 5 6 "'4'5 Fluctuations
cause all the continuous transitions to be defect-
unbinding transitions of the type first discussed by
Kosterlitz and Thouless. '6'

In a finite bulk field the N phase always wets the

wall sufficiently close to the tricritical point. This fol-
lows by noting that~8 near a critical point wetting al-
ways occurs because o.t2 —( T, —T)" and a.

~
—o.

2—(T, —T) ' with p, & pt (where pi is a surface ex-
ponent); near a three-dimensional tricritical point

r& i 9 10, 15
p, =

The form of surface field that we have chosen al-
ways implies some extra order at the wall. We choose
this form because it allows us to examine the qualita-
tively new features of the surface phase diagram, (c)
and (d) above. A slightly different form allows the
further possibility that I ~=0, I j =0, as T T~+~.

This corresponds to complete wetting by the iostropic
phase and has been observed for SCB (4-n-pentyl-4'-
cyanobiphenyl) on walls coated with parylene and po-
lyimide. '9 In this case the P phase completely wets the
wall near the tricritical point.

These ideas may be described within Landau —de
Gennes theory as follows. ' 0 ' The free energy per
unit volume of a nematogenic system may be written
as

~ 0+ 2 ~QjiQij 3 BQij QjkQki+ 4 (Qij Qij) 2 AHi jQij+ + Gi

,' L, (r1Q;—,/rlx„)rlQ;, /rlx„+ —,
'

L, (B Qj/8 xj)BQ /l)x„, (3b)

where H is the magnetic field, X„ is the anisotropic part of the magnetic susceptibility (assumed negative here),
A = A'( T T'), and L& —and L2 are effective elastic constants. Following Fan and Stephen'2 we find it convenient
to deal with a nondimensional version of Eqs. (3).

Defining g = —CQ/B, p = —CP/B, and F= C3&/B4, one obtains

F= Fo+ F„+FG,

F„= ~ tv' + 4 q +,6 q —hv) +p (t —q+ —', q ) +p,
(4a)

(4b)

where t = AC/Bz is the nondimensional temperature, and h = —,' X„H C /B3 is —adimensionless ordering field.
With this free energy the N-I transition takes place at tN&= —,', , and the tricritical point occurs at t, = —,', , h, = —,'4.
The phase transition can also be formally extended to t & 0, where both biaxial and uniaxial phases are only meta-
stable (the stable phase is a large-positive-Q uniaxial phase). ' '3 The P phase becomes unstable along the line
q= —,

' [ —1+(1—18t)' 2]. The experimentally relevant h =0 case has q=0 for t & tN, and q= —,', [1+(1
—24t)' ] for t & tNi.

In the presence of a surface one must minimize a surface free-energy functional of the profiles q(z), p (z):
'2

e[q(z),p(z)} = „dz F„(7),p) —F +g +g —h 7)(z=0), (5)
i j

where gt = [(—', L~+ L2) C/2B ]' and f2= (LqC/
B2)~jz are correlation lengths F = F(q (~) p ( ) ) theory of Cahn, ' and possesses a solution in closed
is the bulk free-energy density far into the bulk fluid,
and ht is a dimensionless surface contact potential. =

3 [1—(1—6t)' ], and that when 7l(z) & q, (t),1/2

The planar boundary conditions are imposed by the p(z) = [—, (q ——', g —t)]'j . The surface phase dia-

condition h~ & 0. We have taken the simplest form of gram possesses features predicted by Cahn, '8 in partic-
the surface free energy consistent with the phenomena ular, a first-order wetting transition at P-N coexistence
under discussion. More generally we expect terms (in this case wetting by the nematic phase). The transi-
quadratic in the surface order parameters. tion takes place at decreasing temperatures as the sur-

The Euler-Lagrange equations resulting from Eq. face field h& is increased, and is accompanied by a
(5) are only readily solvable in the case (2=0. In this first-order prewetting line away from P-N coexistence,
case, however, the theory strongly resembles the along which there is a discontinuity in I"

& and I p, and
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which terminates at a surface critical point. For suffi-
ciently large ht the wetting transition can occur in the
unphysical region (h & D, t & +, ) or even be preempt-
ed by the loss of stability of the P phase.

These features are general to wetting phase dia-
grams. The novel feature of this surface phase dia-
gram is the additional presence of a line of continuous
surface phase transitions at q (z = 0) =q„at which I p
becomes nonzero. This phase transition corresponds
to the breaking of the surface symmetry in the x-y
plane. As ht is increased this line may terminate (a) at
a surface critical end point on the prewetting line
(which may or may not be in the physical region), or
(b) at the limit of stability of the P phase. The topolo-
gy of the phase diagram in t hht sp-a-ce is shown in
Fig. 1. If the surface energy includes terms quadratic
in q a third possibility is that the line terminates on the
P-N coexistence curve.

Experimental interest is concentrated on the zero-
external-field (h =0) case. Inspection of Fig. 1 shows
that in this case the surface phase diagram is governed
by whether the prewetting line or the continuous-
surface-phase-transition line crosses the h=Q line.
We find that (a) for ht & h» = O.Q118, there is no sur-
face phase transition, only a bulk phase transition at
TNt, this is the regime in which the nematic only par-
tially wets the wall. The wetting regimes are as fol-
lows: (b) For htt & ht & htz=0. 0161 there is a first-
order surface phase transition; (c) for ht2 & ht & ht3
= 0.0241, as Tis decreased there is successively a con-

FIG. 1. Surface and bulk transitions of the system in the
space of temperature (t), bulk field (h), and surface field
(h~). AC is a line of bulk continuous transitions, A is the
tricritical point, and XA is a line of bulk first-order transi-
tions. CARO is the h~=0 plane (no surface coupling).
AI AA is a sheet of first-order surface transitions, and
ACTA is a sheet of surface Kosterlitz-Thouless transitions.
Points with Greek letters lie in the plane h = 0,

tinuous and a first-order surface phase transition; and
(d) for ht & ht3 there is a continuous surface phase
transition at a temperature above TNt.

The qualitative structure of the phase diagram
remains unaffected by relaxation of the (2 = 0 approxi-
mation. A stability analysis of the I'p = 0 solutions
(for which the approximation is exact) shows that the
continuous surface transition now occurs as 7i(z
=0) & q, Th. e $2=0 approximation underestimates
the N-I surface tension; relaxing it pushes all features
of the phase diagram towards the tricritical point, and
hence increases hq~, h~2, h&3. The continuous transition
is third order in the g2 =0 approximation, but becomes
second order otherwise.

However, the mean-field picture gives a qualitative-
ly incorrect picture of the surface phase close to com-
plete wetting by the N phase. For all T & TNt the sur-
face layer in which p(z)e0 is not macroscopically
thick. The nematic director in this region is con-
strained to lie in the plane of the surface. The surface
biaxial layer therefore has the symmetry of the two-
dimensional X-Y model, which has algebraic but no
true long-range order in its low-temperature phase.
The scale of the decay of directional order will be
roughly the thickness of the nematic film; as coex-
istence is approached this diverges, achieving full
long-range order in the saturated film at coexistence.
We expect that the continuous phase transition will
not be a true ordering transition, but rather a defect-
unbinding transition. '6'7 The relevant defects are dis-
clination lines in the director field, which lies in the
x-y plane23 (the director is a function of x and y, but
not of z). In practice, even the saturated film (at or
below TNt) will exhibit a pattern of disclination lines
pinned to surface imperfections (the Schlieren tex-
ture). In the unsaturated film these defects are equili-
brium phenomena, however. An analogous phe-
nomenon has been noted for nematic films between
plates. 24 At the defect-unbinding transition there will
be a jump of 8/n. in the surface elastic constant K,
where the fluctuation energy of surface director fluc-
tuations is

0, = —,
' K„(Vtt@)2dx dy,

with @(xy) the angle between the director at (xy)
and the x axis. 25 This jump should be observable, for
instance, in light-scattering measurements.

A good candidate for the experimental realization of
the phenomena that we describe is the SCB—liquid-
gallium interface. This interface imposes planar boun-
dary conditions on the SCB. The nematic phase
strongly wets the interface with respect to its vapor, 26

which suggests that it may also do so with respect to
the isotropic phase.

Finally, we note that related phenomena occur in
other areas of statistical mechanics. In the theory of
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magnetism, under same circumstances there can be a
surface transition which occurs above the critical point
and marks the onset of surface order. s '5 The line of
surface Kosterlitz-Thouless transitions in the system
that we discuss is an example of a line of such transi-
tions. We might ask whether this line meets the bulk
second-order P-N line above t, at a special or surface-
bulk transition. The form of surface interaction that
we take in Eq. (5) prohibits this, but a surface energy
term quadratic in the surface order parameters allows
this; such a term may also affect the order of the wet-
ting transitions and give rise to a phase diagram slight-
ly tnore complicated than Fig. 1. The surface defect-
unbinding transition always occurs if the nematic wets
the wall unless it is preempted by the Sheng transition.
An analogous surface transition also occurs in 4He

films adsorbed at a wall, either from the vapor or from
a 3He-rich 3He-4He mixture; the jump in the surface
elastic constant corresponds to the jump in superfluid
density associated with the sudden onset of third
sound.
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