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Quantum Dynamics anti Statistics of Vortices in Two-Dimensional Superfluids
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The phase change of the wave function of a superfluid film as a vortex moves around a closed
path counts the number of superfluid particles enclosed by that path. This result is used to investi-
gate whether such vortices obey "fractional statistics. " %e conclude that this is not the case in
compressible superfluids such as 4He films.
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v(r) = (I/2vr)z&&'7(x„y„l Inr R„I), —

where z is the direction normal to the surface. A vor-
tex moves at the local superfluid velocity at its center:

zx (R„—R,)
27r X " IR„—R

(2)

If the superfluid is modeled as an incompressible fluid,
the energy of the vortex configuration is purely kinet-

The possibility that elementary excitations in two-
dimensional (2D) systems may obey nonstandard
quantum statistics has aroused recent interest. '2 The
intriguing suggestion that vortex topological excita-
tions in superfluid films might exhibit such effects has
been made recently by Chiao and co-workers. 3 How-
ever, these authors' conclusions are based on nonmi-
croscopic arguments; here we present a microscopic
analysis of this question which suggests a quite dif-
ferent result.

A superfluid film may be considered as quantum
mechanically two-dimensional if the fluid is bound in a
quantum well at a substrate surface, and the tempera-
ture is sufficiently low that there is only zero-point
motion normal to the surface. This situation may be
more or less realized in thin He films with surface
coverage of order of a monolayer; however, thin su-
perconducting films do not appear able to meet this
criterion.

Fetter~ has pointed out that since the phenomeno-
logical hydrodynamic equations of motion of super-
fluid vortices in the absence of dissipation can be
described in a Hamiltonian formulation, they can be
quantized. Elementary vortex excitations in a mass-m
Bose-particle superfluid carry quantized circulation
+ h/m. s The superfluid velocity field of a system of

such vortices with circulation y„and centers R„ is

ic, and up to a constant term is given by

(3)

where p is the superfluid surface particle density, and
g is a length scale characterizing the vortex core; (3) is
valid for vortex separations large compared to (.

The equation of motion (2) may be obtained~ by use
of (3) as the Hamiltonian function by introduction of
commutation relations

[R„',RJ ] =iq„o,l e'~"z"

where q„=y„m/h = +1 is the topological charge of
the vortex, and we have defined the characteristic
length l = (2m p) '; 2m I is the surface area per parti
cle of the superfiluid film. [If (4) is derived from the
London equations for a superconducting film, 4 2ml2 is
the surface area per Cooper pair. ] The commutation
relation (4) is formally identical to that to the
"guiding-center" coordinates of a 2D electron moving
in a cyclotron orbit in a magnetic field, where l is the
"magnetic length, " i.e., 27rl2 is the surface area per
magnetic flux quantum h/e.

The phenomenological commutation relation (4)
strongly suggests the following conjecture: The phase
change of the superjluid wave function as a vortex is
moved adiabatically around a closed path includes a term
2n q times the mean number of superfluid particles en
closed by the path 6This is th.e direct analog of the cor-
responding result for a charged particle moving in a
magnetic field. The relation (4) also implies the un-
certainty principle that a vortex center cannot be local-
ized within an area smaller than the mean area per par-
ticle, thus reflecting the underlying particulate nature
of the superfluid.

The above phenomenological arguments can be sup-
ported by a microscopic argument. In a noninteracting
Bose condensate, the ground-state wave function W
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and the one-vortex —state wave functions W+-' (cen-
tered at the origin) are given by product wave func-
tions W = g;f (r;), where Q (r) is the lowest-
energy single-particle wave function with surface angu-
lar momentum L'= m/h. Since (away from the
boundaries of the system) P-+'(r)/Po(r)~ x +iy, the
one-vortex state of a large system can be written as

A~-+)(0)e'0, where

A~'-)(R) =,[(x,—~) +I(y, —I')],

and (x;,y;) = r; and (X 8 = R are the surface coordi-
nates of the superfluid particles and the vortex center.
This form suggests the following Ansatz for the (di-
lute) multivortex state of the interacting system:

„[A„('ti (R„)f(R„)] Iro,

where %0 is the true ground state, and f(R)
= Q,g(ir; —Ri/g), with g(r) a real function, is a fac-
tor allowing for relaxation of the particle density pro-
file of the vortex in the interacting superfluid:
f(r) —const/r for large r as the density becomes uni-
form far from the vortex. This Ansatz was proposed
for the single vortex by Feynman5; Fetter7 has studied
this and improved forms, and also considered product
wave functions for multivortex states in the Gross-
Pitaevski formulation. s

L'W =t X„(Nq„+ i z R„x8/tlR„) %, (8)

where N is the number of superfluid particles. Note
that if a net vorticity is present (i.e. , gq„e0), L is
divergent in the limit of an infinite fluid (N ~).

The change of phase of 'P as a vortex coordinate R„
is moved around a closed path I is given by Berry's
phase9:

ae „(r)= i$) dR„&e(a/BR„)+),
where W is assumed normalized. For the wave func-
tion (6), the form of this integral is essentially the
same as that considered by Arovas, Schrieffer, and
Wilczek'0 in connection with the fractional quantized
Hall effect; repeating their manipulations, we have

The superfluid velocity field is given by

v(r) = (+ij(r)W)/(Vip(r) iW), (7)

where p(r) = g;82(r —r;) and j(r) = g;p;5 (r —r;)/
2m + H.c. are the superfluid density and current opera-
tors. For the wave function (6), v(r) is easily evaluat-
ed exactly by use of the commutation relations of j(r)
and A t +-)(R), plus the time-reversal invariance prop-
erty 'Iro'~%'0 of the ground state: v(r) for (6) is
identical to the hydrodynamical expression (1) with
y„= q„h/m. Similarly, the energy of W relative to 'Po

can be obtained as (3) plus core-energy corrections.
The angular momentum operator L' acting on (6)

has the result

A@„(I ) = q„„dzr(3z dR„x'7(Inner —R„i)p(r;(R,]),
where p(r;(R, ])= (Vip(r)iW). To proceed, we
=p(r;(R „v'&v]) is the expectation value of the density

hp(r —R„) is the change due to its presence. In the limit

variant function Spo(r), the density depletion profile of
Stokes's theorem can be applied to part of (10) to give

b,p„(I ) =2mq„& d .r po(r) + q„f)zx dR„„dzr(r/r2)

The area integral of the first term is over the area en-
I

closed by I; in the second term, the rotationally in-
variant part of Sp(r) does not contribute, and Bpo(r)
for the isolated vortex can be subtracted.

The expression (11) for A@„(I ) consists of two
parts: a part 2m. q„ times the mean number of super-
fluid particles (in the absence of the vortex at R„) en-
closed by I, plus residual vortex-interaction terms that
become small in a dilute-vortex limit, provided no
point on the path I comes to a vortex core. This
analysis of the Berry phase of a microscopic Ansatz
wave function is in agreement with the result conjec-
tured from the phenomenological commutation rela-
tion (4).

The expression (10) indicates that the effective
Lagrangean describing vortex dynamics will depend on

(10)

[8p(r) —~po(r) ].

vortex velocities R„ through a linear term

L
&

t g„q„z && R J
——d r p (r) Vln i r —R'„ i. (12)

The integral fLtdt for a closed vortex path R„(t) is
equal to 0 q„ times the integral of p(r) over the area
enclosed by the vortex path, and thus I i is precisely
the term that will contribute the Berry phase obtained
here to the action integral for such a process.

An answer to the question of vortex statistics can
now be given. If, like Chiao and co-workers, 3 we con-
sider the phenomenological model of an incompressi-
ble fluid where p(r) = po for ir —R„i ) g, then 5@„
=27rq„(poA —N„7rpogz), where A is the area en-
closed by I and N„ is the number of enclosed vortices

write p(r; (R,[)= p (r) + hp(r —R„), where p (r)
operator in the absence of the vortex being moved, and

iR„—R, i ~, vav', hp(r) becomes a rotationally in-

an isolated vortex. Since p (r) is independent of R„,
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(of either sign). This implies that the vortices behave
like "fractional statistics" objects' with topological
parameter 0 = m5n. , where On = mpog is the number of
superfluid particles excluded from the vortex core.
Note that in the phenomenological model, this is a
continuously variable parameter.

In their recent Letters, ' Chiao and co-workers at-
tempted to derive a 0 parameter from consideration of
the spectrum of eigenvalues of an operator generating
rotations of the vortex coordinates. In fact, the gen-
erator of rotations is undetermined up to a constant,
and an absolute expression for L' can only be obtained
from a microscopic calculation in terms of the back-
ground superfluid; in the case of the superfluid, there
is a term Xtgq„ that diverges in the limit of the infi-
nite fluid. The argument of Ref. 3 is based upon a
separation of the total angular momentum into a term
generating rotations of the center of vorticity, and a
residual term depending only on the relative coordi-
nates of vortices. Despite the assertions of Ref. 3, it
does not appear to us that there is any unambiguous
way to partition the constant term between these two
parts of the total angular momentum. With the choice
made in Ref. 3, the relative-motion angular momen-
tum of a two-vortex system has eigenvalues t (n + —,

' ),
which Chiao and co-workers suggest implies nonstand-
ard statistics. However, because of the inherent ambi-
guity involving the constant term in a separation into
"center of vorticity" and "relative" angular momenta,
we do not believe the nonmicroscopic arguments of
Ref. 3 for a "universal vortex-number dependent
statistics" to be valid, and suggest that such questions
can only be decided by microscopic calculation of the
Berry phase.

The phenomenological assumption of incompressi-
bility has serious shortcomings when applied to micro-
scopic models of superfluids, and the above analysis
of statistics fails in the case of 4He films because they
are compressible: If P is the (surface) pressure
—[BE/BA ]& and ~ = p dP/dp is the (surface)
compressibility, the pressure gradient dP/dr = —h2p/
mr due to the circulation around the vortex leads to
an asymptotic superfluid density profile p (r)
= p(cc ) [1—((/r) ], where g = (lr p/2m ~) ' is the
"healing length" of the superfluid. The net deficit of
superfluid particles within a radius r of the vortex
center does not converge to a finite value 0/7r as
r ~. There is thus no "dilute limit" in which the
quantum dynamics of vortices in a compressible super-
fluid can be replaced by that of point objects obeying
"0 statistics. "

If the interaction potential between superfluid parti-
cles falls off as I/r2 or slower, the fluid is incompressi-
ble at long wavelengths, and a "neutralizing back-
ground" potential is required for the existence of the
thermodynamic limit. For a potential failing off more

slowly than I/r2, screening prevents the accumulation
of any net superfluid deficit on the vortex core„and so
0=0. However, in the special case of repulsive in-
teractions falling off as g/r2 at large distances, the po-
tential of a finite superfluid deficit 0/7r =h /2mg
asymptotically balances the pressure gradient of the
circulation, and a description of vortices in such a sys-
tem as 0-statistics objects should be possible. Howev-
er, we emphasize that this special type of long-range
force is not present in physically realized superfluid
films.

In summary, we have obtained the phase change of
the 2D superfluid wave function that accompanies
motion of a vortex around a closed path: It is 27r

times the mean number of superfluid particles en-
closed by that path. In the case of an incompressible 2D
superfluid, this implies that the topological parameter
0 would be m. times the mean depletion of superfluid
particles from the vortex core. However, we must
stress that physical 4He films constitute a compressible
superfluid, and there is no limit in which their vortices
can be described as obeying fractional statistics. Our
results thus contradict recent claims of Chiao and co-
workers. 3 They may also provide a basis for a semi-
classical quantization of vortex dynamics. "
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