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Propagative Phase Dynamics for Systems with Galilean Invariance
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We present the nonlinear phase equations describing the stability of a one-dimensional periodic
pattern, with mean flow effect due to Galilean invariance. We show that the phase dynamics is
second order in time, and could lead to an oscillatory instability of the pattern.

PACS numbers: 47.20.+m

In many nonequilibrium systems driven by spatially
homogeneous forcing there is a transition from a uni-
form state to one varying periodically in space. Long-
wavelength modes are very general features of such
dissipative structures, and can be traced to continuous
broken symmetries. The case of translational invari-
ance has been investigated by several authors who
have studied pattern dynamics in reaction-diffusion
equations,*? in the Rayleigh-Bénard instability,> and
in the Taylor-Couette instability.* We have pointed
out that another phase variable exists as a result of the
broken Galilean invariance.®* We show with the help
of a simple model that the phase dynamics is no longer
diffusive when the Galilean invariance is taken into ac-
count, and is associated with a codimension-two singu-
larity that leads to propagative modes.

We consider a supercritical bifurcation that leads to
a one-dimensional pattern described by a Landau-
Ginzburg-type equation®

A=A+ A, — 4124, e))

where A4 (x,t) is a complex amplitude that slowly
modulates a pattern of wave number g,. Dimension-
less units are used in Eq. (1) and the subscripts denote
partial derivatives.

Let us suppose that the full set of equations describ-
ing our problem is Galilean invariant, and involves a
velocity field B(x,¢).” It follows that a constant veloci-
ty field B along the x axis is undamped, and corre-
spondingly weakly damped for slow inhomogeneities.
This mean drift B is thus another dangerous mode,
i.e., a mode with nearly zero growth rate, that one ex-
pects to be coupled with 4. This occurs in Rayleigh-
Bénard convection, where such a large-scale velocity
field is driven by inhomogeneities of the convective
pattern, and in turn tends to convect the roll pattern.®
The correct description of the instability onset there-
fore requires two coupled order parameters, 4 and B.

In our one-dimensional model Eq. (1) is modified
and becomes

A=A+ A, —|A|24 — igyAB — BA,. )

The meaning of the new terms, as noted in Ref. 8, is
the advection of the pattern by the velocity field B.
Indeed, if the pattern of wave number ¢, is advected
at a constant speed B, one observes a temporal oscil-
lation at frequency g By in the laboratory frame.

With the use of symmetry arguments (e.g., transla-
tional and Galilean invariances, and space-reflection
symmetry) the equation for Breads

B,=\B,+o|A|?— BB,, 3)

where A measures viscous diffusion and o is the
strength of the coupling; we note that B is only gen-
erated by pattern inhomogeneities. We first study the
one-dimensional pattern dynamics described by Egs.
(2) and (3), and show the basic mechanism of interac-
tion between the neutral modes associated with
translational and Galilean invariances. We then apply
the same technique for the specific example of thermal
convection, and derive a nonlinear evolution equation
for the oscillatory instability.?

The family of stationary solutions of Egs. (2) and

(3),
Ao(x)=Qeiqx, B0=O, (4)

with Q*=1—¢? and |q| <1, represents perfectly
periodic patterns. To investigate their stability we de-
fine a (x,¢) and b(x,¢) by

A(x,0)=Ay(x) + a(x1) e,
B(x,t)=—b(x,0/(qo+q) 0,

and linearize Egs. (2) and (3) in g and &. For spatially
constant a and b, we find

a,= —2Q%Rea + ib,

Q)

b,=0, (6

where Rea denotes the real part of a. Equation (6)

can be rewritten as
b, 0 1l]le
-6 ol

where a=p+i¢p and b=1y; thus, in the long-

P:= —2sz»
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wavelength limit, we have two neutral modes, ¢ and
Y, respectively related to translational and Galilean in-
variances. Their linear coupling can be understood as
follows: The advection of the pattern at a constant
speed ¢ leads to a spatial phase ¢ that increases linear-
ly in time. Equation (7) represents a codimension-two
bifurcation.!® Two control parameters are usually
necessary to reach such a situation, which arises ‘‘na-
turally’’> here because of the structure of the Galilean
group. This makes the phase dynamics second order
in time, and one could expect oscillatory behavior.

In the long-wavelength limit, we see from Eq. (6)
that p=Rea is damped. The main assumption of
phase dynamics is that the fast variables, here p, fol-
low adiabatically the phase modes ¢ and ¥, and their
spatial derivatives. In other words, the phase modes
and their spatial derivatives contain all the information
about the asymptotic time dependence of a and b. We
express this assumption in the Ansatz

[Z = VId b bt b ies - - ] ®
and look for an expression for ¢ and ¥ in the form!!
¢I=w! ¢t=f(¢rl’”ax)- (9)

We next assume that ¥ and fcan be expanded in mul-
tiple Taylor series in ¢, ¢, and 9,, and find the expres-
sion of ¥V and fat each order using a nonlinear pertur-
bation method similar to the one used for ordinary dif-
ferential equations.!! We find up to the fourth order
in 9, and second order in ¢ and Y

¢t= v,
¢t=a¢xx=B¢m+7¢’xx70c+8'~px:ocx
+ 8yt gl(¢x¢’x)x»

where «, B, v, 8, g and g’ are functions of g that
depend on gg, A, and o. We first need the values of «
and B to study the linear stability of a perfectly period-
ic pattern with respect to long-wavelength perturba-
tions, i.e., ¢ and ¥ varying like e ** with k— 0.
We have

a=20q(qy+q),
B=A+[Q*—0oqqy— (2+0)q*1/ Q>
We find from (10) the dispersion relation

2+ Bkt +ak?=0.

(10)

In the limit of small ¢q and for og > 0, we get a pair of
damped propagative modes with a propagation speed
(20gpq)V2. A stationary instability exists for ogq
x (go+ q) < 0, and a Hopf bifurcation occurs for
—oot+[(ogp)?+4(A+1) (o + 1 +3)]1/2
2(c+X1+3) ’

oq(gy+q) > 0.

2858

These instabilities are suppressed if A — oo, and are
therefore related to the mean drift effect, and thus to
Galilean invariance. In this limit A — oo the second-
order derivative in time disappears from Eq. (10)
which leads to!?

2

Dot = _ll_%d)xxxx

The Eckhaus instability!? is thus recovered for ¢g>=+
in this singular limit.

A few remarks should be given regarding Eq. (10),
in order to stress that its form mainly arises from sym-
metry constraints. We first observe that it is invariant
under the transformations

¢— —¢, v 4.

This reflects space-reflection symmetry. The invari-
ance of (10) under the transformation

= d+c

is nothing else than translational invariance. Similarly,
the invariance under

y—yY+e d—dtcot

reflects Galilean invariance. Consequently, we wish to
stress that Eq. (10) is not restricted to our model, but
applies for generic one-dimensional patterns with
mean flow effect and the symmetry properties listed
above. !4

Finally, we note that ¢ = ix (where # is an arbitrary
constant) is a particular solution of Eq. (10). This re-
flects the existence of a band of allowed wave vectors
about g, for the pattern described by the Egs. (2) and
(3). We consider

d(x,t)=hx +eenttike

X —X,

and linearize Eq. (10) in e. We get
2+ (B+gh)kn+ (a+gh)k*=0. an

We notice that for 4 small, ¢ = hx represents a periodic
pattern of wave number g + 4/ Q; its linear stability in
the long-wavelength limit is described by the disper-
sion relation

m*+B8(g+h/Q)k*n+alq+h/Q)k*=0. 12)

Using Eqgs. (11) and (12) we get

1 8a ,_ 1388
Q0 9q’ Q 9q°

At leading order in g, these expressions are in agree-
ment with our computation of the coefficients of Eq.
(10), and as noted in Ref. 2, imply that the nonlineari-
ties in phase equations are associated with local
changes in the phase propagation speed and in the
phase diffusion coefficient. This is a well-known
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mechanism in nonlinear wave theory.!?

We now come back to the specific example of ther-
mal convection. In that case the incompressibility con-
dition in the Boussinesq approximation does not allow
a slow variation of B in the x direction only, and the
coupling between A and B requires a y dependence of
these fields. Such long-wavelength disturbances along
the axis of the rolls lead to the oscillatory instability,®
and are described by slow variations of ¢ and ¢ on y.
With a similar analysis as the one used above we get

¢t=lll.' (133)
Yr=ady, By, t+ydy, +3U,,
+g1¢3¢yy+g2(¢}‘l}y)y‘ (13b)

The linear stability analysis is the same as for Eq. (10),
and the oscillatory instability corresponds to the Hopf
bifurcation. The nonlinear terms of Eq. (13) saturate
the oscillatory instability if g; and g, are positive since
they simply renormalize the propagation speed « and
the diffusion coefficient 8.

In most experimental realizations of thermal con-
vection, the top and bottom boundaries are rigid. This
externally breaks Galilean invariance, and thus ¢ is
damped. However, this damping decreases linearly
with the fluid Prandtl number, and can be modeled,
for small Prandtl number, by the addition of the term
— vy on the right-hand side of Eq. (13b). The oscilla-
tory instability occurs from the interaction between the
neutral translational mode and the slightly damped
Galilean mode. Its frequency at onset is finite and in-
creases with the Prandtl number in agreement with the
analysis of Clever and Busse.!® A detailed study of
Egs. (13) and a comparison with the numerical results
on the Oberbeck-Boussinesq equations will be given
elsewhere.
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