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Local Density-Functional Theory of Frequency-Dependent Linear Response
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The linear density response of inhomogeneous electronic systems is discussed from a density-
functional point of view. We derive a local-density approximation for the frequency-dependent
exchange-correlation potential, which is compared with the "adiabatic" expression used in former
work.

PACS numbers:: 31.10.+z, 03.6S.—w, 32.80.—t

The classical density-functional formalism of
Hohenberg and Kohn' and of Kohn and Sham is a
ground-state theory. Although a time-dependent ex-
tension of the Thomas-Fermi model was derived long
ago, 3 the time-dependent counterpart to the Kohn-
Sham (KS) equations was lacking for a long time. In
1980, Zangwill and Soven published an interesting pa-
per in which they calculated atomic photoabsorption
cross sections using a self-consistent KS-type method.
Although they used a simple, frequency-independent
exchange-correlation potential, the calculated photoab-
sorption cross sections turned out to give a rather good
description of experimental data. A mathematical
foundation of time-dependent density-functional the-
ory has been discussed in a recent paper by Runge and
Gross. ~ The aim of the present note is to provide a
local-density approximation for the frequency-de-

I

n t (r, co ) = J d r '
XKs (r, r', to )v t" (r', to ),

pendent exchange-correlation potential within linear-
response theory.

We consider an unperturbed inhomogeneous elec-
tronic system with density np(r) in the ground state
(assumed nondegenerate) of the static external poten-
tial vp(r). Now consider a small perturbing potential
v&(r, t) and the corresponding density response
n, (r, t). The associated Fourier components vi(r, c0)
and n&(r, to) are then related by the equation

n i (r, to ) = d r' X (r, r', to )v, (r', t0 ), (1)
where X(r, r', to) denotes the exact density-density
response function.

We make the assumption that the density no(r)
+ n

& (r, t ) is "noriinteracting v-representable, " i.e. ,
can be reproduced by a system of noninteracting elec-
trons in an appropriate single-particle potential
vott(r) + v~&" (r, t). We can then write

(2)

where XKs(r, r', to) is the density-density response function of the noninteracting (Kohn-Sham) ground state corre-
sponding to vo" (r). It is given by (atomic units are used throughout)

y, (r) @,(r)@,(r')'y, (r')
cu (&J. &I ) + I 5

where the @;(r) and e, are the KS eigenfunctions and eigenvalues, and the f; ( = 1 or 0) are occupation numbers.
Next we define the exchange-correlation (xc) part of vt "by the equation

~ n, (r', r )
v't "(r, co) =v, (r, co)+J d r'+v, „,(r, to).

r —r' (4)

(Omission of vi „,yields the time-dependent Hartree response. ) In the spirit of density-functional theory we seek
an expression of vt „,(r, to) as a linear functional of n& (r, co),

v& „,(r, to) =, d r' f„,(r, r', co)n, (r', to), (5)

where f„,depends on the unperturbed ground-state density, no(r). Then Eqs. (2)—(5) represent a scheme for the
self-consistent determination of the density response n, (r, co). For the most general situation, we do not know
whether f„,exists, let alone how to construct it. However, a formal representation of f'„, can be derived from the
definitions (1), (2), (4), and (5) as

f'„,(r, r', co) = XKs'(r, r', co) —X '(r, r', co) —I/ir —r'i, (6)

provided that the inverse response functions X and Xxs exist. (A mathematical discussion of the invertibility of
the mapping of time-dependent single-particle potentials on time-dependent densities is given in Ref. 5.)

For initially homogeneous systems [no(r) =const], the function f„, is explicitly known: In that case, Eqs. (1)
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and (2) read

nt(r, cu) = d r'X»(~r —r'~;co)u~(r', co)

and

nt(r, co) = „d'r'Xo(~r —r'~;o))ut"'(r', co),

where X» denotes the density-density response func-
tion of the homogeneous electron gas and Xo is the
Lindhard function. Fourier transformation to q space
gives

f„",(q, co) = I/Xo(q, cu) —I/X "(q, o)) —4m/q'. (9)

We may note that f„", is related to the so-called local-
field correction, 6 G(q, co), by the relation

The LDA has proved very useful for time-independent
problems. Its value for response theory remains to be
tested.

By use of well-known features of the electron gas
response functions X"(q, cu) or G(q, cu), the exact
function f„", is easily shown to have the following
properties:

(i) lim f„",(q, 0;n) = [n e„,(n)] —= fo(n),q-o dn

with e„,(n) the xc energy per particle of a homogene-
ous electron gas with density n . This equation is a
consequence of the compressibility sum rule. 6

f„",(q, co) = —(4~/q') G(q, cu). (10) (ii) lim f„",(q, ~;n) = —, n-
q-0 "' ' ' ' dn

In order to derive an approximation for u& „, for inho-
mogeneous systems, we make a double local-density
approximation (LDA): We assume that no(r) is suffi-
ciently slowly varying that f„, can be replaced by f„"„
evaluated for the local density7 no(r); and, secondly,
that nt(r', co) is sufficiently slowly varying that, in Eq.
(5), it can be replaced by n~ (r, cu).8 This results in the
replacement of

f„,(r, r', cu) 5(r —r') f„",(q = 0, cu, no(r) ), (11)

so that

v] „,(r, cu) = f„",(q =O, o), no(r)) n)(r, co).

d~ Imf», (q, o)')
Ref„",(q, co) f„",(q, ~) =PJ—~l

CiO
—6)

=f (n).

This result follows from the third frequency moment
sum rule.

(iii) According to the best estimates of e„,(n),
the relation fo(n) (f (n) & 0 holds for all densities.

(iv) f"„,(q, ~) is a complex-valued function whose
real (imaginary) part is an even (odd) function of fre-
quency.

(v) f„",(q, co) is an analytic function of cu in the
upper half of the complex cu plane which, for each q,
approaches a real high-frequency limit f„",(q, ~).6

Therefore, the following Kramers-Kronig relations are
satisfied:

Ref "„,(q, cu') f„",(q, ~)—
Imf„", (q, co) = —P ~

m CU CU

(vi) Imf», (q = 0, cu ~) = —c/co3~ . A second-
order perturbation expansion" of the irreducible po-
ILarization propagator yields

c =23m/15.

Imf"„,(q = 0, o);n ) =
[1+b (n)o)2]'~4 ' (14)

This perturbation result becomes exact at high densi-
ties; we conjecture that it is a good approximation over
a wide density range.

(vii) By use of (vi) and the Kramers-Kronig relation

(v), the real part can be shown to behave like
Ref», (q =O, co ~) =f +c/cu3~2

The LDA (12) requires an approximation for only
the long-wavelength limit of the function f„",(q, m). A
parametrization satisfying all the exact features listed
above is provided by the following Pade-type expres-
sion:

with

b (n) = (y/c )"'[f (n) —fo(n) ]' '

a(n) = —(y/c) [f (n) —fo(n)]

y = ll —,
' ]'/(32m. )'~2,

(15)

and c given by (13). The real part corresponding to
(14) is calculated by use of the Kramers-Kronig rela-
tion (v). Figures 1 and 2 show the real and imaginary
parts of f„",(q =O, cu) for r, =2 and r, =4, where r, is

the Wigner-Seitz radius (4m. /3) r,3 = 1/n. For the
correlation part of e„,(n) we have used the parametri-
zation given by Vosko, Wilk, and Nusair. '0

The photoabsorption cross section is directly related
to the linear density response n&(r, co) via Fermi's
"golden rule. " In order to calculate n

& (r, co),
Zangwill and Soven applied the self-consistent scheme
(2)—(5) with the LDA (12), but using the adiabatic
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FIG. 1. Real part of the parametrization for
f"„,(q =0, (u).

approximation f„,(r, r', ro ) f„,(r, r', 0) . This means
that the real part of the function f"„,(q =O, ro) is re-
placed by its zero-frequency value f'o for all ro, and
that its imaginary part is neglected. To estimate the
quality of this approximation, we first consider the
fractional error of the real part, 5 = [f'p
—Ref„",(q =0, ro, n) j/fo, where, for each subshell, ro

is a characteristic frequency and the total density, n, is
evaluated where the radial density of the subshell
reaches its maximum. For the noble-gas subshells
considered by Zangwill and Soven, 5 lies between 1%
[for Ne(2p) j and 3% [for Xe(4d) j. On general
grounds we expect the error due to neglect of Imf„, to
be comparable. This shows that neglect of the fre-
quency dependence of f„, does not introduce signifi-
cant errors in the case of these photoabsorption
processes.

Finally, we remark on a connection with excited
states: The exact frequency-dependent density re-
sponse determines the positions of any discrete excited
levels and absorption edges.
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