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Orientational and Isotope Effects in Field Dissociation by Atomic Tunneling
of Compound Ions
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A strong isotope effect has been found in field dissociation by atomic tunneling of HeRh +,
which can be reasonably well accounted for with a WKB calculation. Field dissociation can occur
only if the ion is rotated by 180 from its desorbed orientation to line up properly with the field,
This rotation time of a HeRh + ion in a field of —4.5 V/A is determined to be 8 & 10 ' s.

PACS numbers: 82.40.Js, 35.20.Gs, 82.30.Lp

Dissociation of compound ions in a high electric
field was treated by Hiskes as an atomic-tunneling phe-
nomenon, ' similar to field ionization of an atom in a
high electric field by tunneling of an atomic electron,
first treated by Oppenheimer. 2 Evidence of field dis-
sociation was based on an observation of H+ when a
beam of H2 was passed through a region with a field
greater than 105 V/cm. 3 Hiskes's calculations showed
that such a field is needed to field dissociate H2 at an
observable rate. Recently Tsong and Liou reported
clear evidence of field dissociation of HeRh + in a
field of —4.5 V/A based on a high-resolution time-
of-flight ion mass and energy analysis. 4 I report here
the observation of a dramatic isotope effect when He
is replaced with He.

In some respects field dissociation of 4HeRh2+ is
similar to n decay which also occurs by a tunneling ef-
fect. A WKB calculation gives a reasonably good ac-
count of the isotope effect that we have observed. A
theoretical model can explain why a fraction of
4HeRh + ions are field dissociated within a time of
8&&10 '3 s of their formation, and also only in a nar-
row spatial zone. The resolutions of our time and spa-
tial measurements are —20 fs and —0.3 A, respec-
tively.

~HeRh2+ can be produced by low-temperature
((100 K) field evaporation of a Rh tip in He of
1&&10 8 Torr or higher, and in a field between —4.5
and 5.0 V/A. Under this field each surface Rh atom in
the more protruding position undergoes field adsorp-
tion with a He atom. When the field evaporation is
done with a weak stimulation (heat effect) of laser
pulses of 300 ps width, a flight-time spectrum of ions
such as shown in Figs. 1(a) and 1(b) is obtained. It
contains a He+ line, a Rh2+ line with a double-peak
structure, and a HeRh + line. The He+ line and the
main Rh2+ peak are identical to those of pulsed-laser-
field —desorbed He+ without field evaporation and of
Rh2+ produced by field evaporation in vacuum. 4

A flight-time difference of 30 ns of Rh2+ in the
main peak and in the secondary peak [Fig. 1(b)] corre-
sponds to an energy difference of 51 eV. With use of
the field distribution of a parabolic electrode config-
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FIG. I. (a) A section of the time-of-flight spectrum
showing the energy distribution of He+. (b) Another sec-
tion showing the mass lines of Rh + and 4HeRh +.

uration one finds that Rh2+ in the secondary peak is
formed in a spatial zone of —150 A width which is
centered at —220 A above the emitter surface (Fig.
2). If HeRh2+ dissociates by further field ionization
followed by Coulomb dissociation into a He+ and a
Rh2+, then the He+ ions will have an energy —600
eV less than those in the main peak and should show
up at the flight time indicated by the arrow in Fig.
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FIG. 2. Schematic diagram showing the field-dissociation
zone of 4HeRh2+ 2
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1(a). No such peak indicates that HeRh2+ dissociates
into a He and a Rh2+. The neutral He will acquire
only 51 eV and cannot be detected in our system.

HeRh2+ field dissociates in a well-defined spatial
zone for the following reason. The relative motion of
He and Rh + in a HeRh + ion in a field F is governed
byl

h V2y(r„)+ U(r„)— 2eFz„
(1+M/m)

= Ey(r„), (1)

where r„ is a vector pointing from the He to the Rh +,
p, is the reduced mass, z„ is the component of r„along
F, and U(r„) is the interparticle potential. Field dis-
sociation can occur only if z„ is positive. When a
HeRh2+ ion has just field evaporated it has the wrong
orientation as shown by A of Fig. 2. As the ion is ac-
celerated away it also rotates. As it rotates by 180' to
orientation B it can dissociate. If it is not dissociated it
has to wait for an additional rotation of 360'. By this
time the ion is —1100 A away from the surface and
the field is too low to cause field dissociation. Thus
"8X10 '3 s" is the time for the ion to rotate 180'.
With use of a semiclassical estimate, this time is given
by

VTP f~ VPP, I'~2 2

lj(j+ I)&]'~2 j&

for large j, where cu& is the angular speed when the ro-
tational quantum number is j. Taking r„=2.6 A and
p, = 6.39 && 10 kg, one finds that t16 = 8 && 10 '3 s.
This agrees best with our measured time. This state
has maximum population at 510 K. The tip tempera-
ture was 55 K but laser pulses heated the surface to—200 K for a few nanoseconds. The ion temperature
thus seems to be much higher than the surface tem-
perature. This calculation, however, does not account
for the torque of the applied field. The angular ac-
celeration time and the question of how the value of j
increases as a result of the applied electric torque are

FIG. 3. The section of the time-of-flight spectrum show-
ing Rh + and HeRh +

fundamental problems which should be of interest to
quantum theorists.

When 4He is replaced with 3He, the secondary Rh2+
peak disappears as shown in Fig. 3. This dramatic iso-
tope effect is due to the potential-barrier —reduction
term, —2eFz„/(1+ M/m); its magnitude is greatly re-
duced by the replacement of 4He with 3He. When
r„ II F, the potential barrier of HeRh2+ is shown in Fig.
4. If one approximates the segment of U(r„) beyond
r„by a straight line of slope st, then the WKB barrier-
penetration probability is given by5

&/2

D(hF) =ex 4 2P, 1 + I+M/ h3/2

st 2eF

where h is the barrier height. The interaction between
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FIG. 4. Schematic diagram showing the potential barrier
in the field-dissociation process.
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TABLE I. Values of D(h, F).

F
(V/A) 4HeRh2+ 'HeRh'+

4.8
4.7
4.6
4.5
4.4
4.3

1

0.65
0.28
0.09
0.02
0.01

2.4x 10
&10-"
&10-"
&10 10

& 10—10

&10 "

He and Rh2+ should be very short ranged, and thus
I/st « (1+M/m)/neF and the I/st term can be
omitted. Figure 1(b) shows that at —4.5 V/A,
D(h, F) should be a few percent; we therefore assume
that for 4HeRh2+, h =0 and D(h, F) =1 at F=4.8
V/A. The binding energy H'of HeRh2+ should be the
same for 3He and 4He. H and h are related to each
other by

h = H 2eFr„/(1+—M/m). (4)

Using Eqs. (3) and (4) gives the barrier-penetration
probability per barrier encounter for 4HeRh2+ and
3HeRh2+ at different fields as listed in Table I. This
WKB calculation gives a dissociation rate of 3HeRh2+
smaller than that of HeRh + by several orders of
magnitude. The calculated values of D(h, F) are con-
sistent with the experimental results. The rotation

time of 3HeRh2+ should be —30'/0 shorter than that
of HeRh +, and thus the correct orientation for field
dissociation can be reached in a shorter time. Howev-
er, even at the highest field, i.e. , the field at the sur-
face of —4.8 V/A, the tunneling probability is still
much too small for field dissociation to occur. The
calculation also gives the binding energy of HeRh2+ as
H = neFr„/(1+M/m) = 2&&4.8&& 2.6/26. 75 eV=0.93
eV, consistent with a theoretical calculation. 6

In summary, a dramatic isotope effect has been ob-
served in the field dissociation of HeRh2+ which can
be well accounted for with a WKB calculation. An in-
teresting theoretical question is how the rotational
speed of a compound ion changes discretely as a result
of the torque of an applied field.
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