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Translational Mass of an Exciton
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From transmission electron-energy-loss measurements we show that the mass of an exciton M'
is greater than the sum of the effective masses of the electron and hole I, + mh. This result is con-
sistent with a recent prediction by Mattis and Gallinar.

PACS numbers: 71.35.+z, 78.40.—q, 79.20.—m

Valence excitons in semiconductors and insulators
have been studied theoretically and experimentally for
many years. The two most widely used theoretical
models are due to Frenkel, appropriate for tightly
bound, small excitons, and to Wannier and Mott, ap-
propriate for more loosely bound excitons with wave
functions extending over many unit cells in the crystal.
In spite of the fact that much work has been done by
use of both of these models over many years, a new
and surprising result was obtained recently by Mattis
and Gallinar. ' They addressed the question of the
translational mass of the exciton. According to the
standard treatment in the effective-mass approxima-
tion this is simply the sum of the electron and hole
masses. That is, the translational mass of the exciton
and the mass of an unbound electron-hole pair are the
same. That result is straightforward and seemingly in-
flexible. It is consistent with all that we know about
nonrelativistic dynamics. According to Galilean in-
variance, internal forces in a composite system do not
affect the motion of the center of mass and the total
mass is the sum of the masses of the particles in the
system.

Mattis and Gallinar show that the translational mass
of an exciton is greater than the sum of the electron
and hole masses. Their result is

M„'= (m, + m„)/(1 —K„/ W),

where rn, is the electron mass, mz is the hole mass, L„
is the kinetic energy of the exciton with principal
quantum number n, and 8'is the average of the elec-
tron and hole bandwidths.

In deriving Eq. (1) Mattis and Gallinar assumed that
the band structure was described by a simple "cubi-
um" model, so that the form of this equation may be
different in a more realistic case, but the general prin-
ciple embodied in this equation may still hold: The
mass of the exciton is greater than the sum of the bare
electron and hole masses in disagreement with the
above effective-mass result. In the next paragraph we
show how inelastic electron scattering can be used to
test directly the prediction of Mattis and Gallinar.

In the effective-mass approximation the energies of
the excitons formed are given by

Eik = Eg+ Eg+f k /2M,

where Eg, the energy gap between the conduction and
valence bands, is the minimum energy needed to pro-
duce an unbound electron-hole pair. The energy E& of
relative motion takes discrete negative values (bound
states) and positive continuum values.

Dispersion of the exciton band is given by the third
term in Eq. (2). In optical-absorption measurements
the photon wave vector is small compared to the
Brillouin-zone dimensions, so that light can only excite
the k =0 states of the exciton. Electron-energy-loss
spectroscopy is an ideal experimental technique to
study this dispersion since the momentum transferred
in the scattering event can be varied independently of
the energy loss and large values of k can be attained.
By measurement of the energy-loss spectra of the exci-
ton at different momentum transfers the dispersion of
the exciton can be measured directly and the transla-
tional mass of the exciton determined. We present in
this paper measurements of the dispersion of the exci-
tons in CuC1 and NaF which support the result of
Mattis and Gallinar.

NaF and CuC1 were chosen for several reasons.
First they have face-centered-cubic structures. This is
important if a comparison is to be made with the
theory of Mattis and Gallinar, since their theory can
only be applied easily to cubic structures. The excitons
are formed in a direct allowed transition that can be
modeled by the effective-mass theory. Band-structure
calculations for these materials show that the conduc-
tion and valence bands are approximately parabolic
and isotropic near the center of the zone and out to
wave vectors measured in this experiment. Parabolici-
ty of the bands is required if the effective-mass ap-
proximation is to apply. Isotropy is important because
we use polycrystalline samples and therefore each
measurement is an average over all directions at a
given momentum transfer. With the energy resolution
used in this experiment, it is important to have an ex-
citon with a large binding energy if it is to be well
resolved; Nap and CuC1 having binding energies of 1.5
eV and 180 meV, 3 respectively.

Transmission electron-energy-loss spectra of NaF
and CuCl were measured at room temperature with a
high-resolution 280-keV electron spectrometer. De-
tails of the spectrometer have been given elsewhere.
By selecting the scattering angle, we can measure
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energy-loss spectra as a function of the momentum
transferred to the sample in the inelastic collision.
In this experiment the energy and momentum res-
olutions were 0.12 eV and 0.1 A ', respectively.

The electron scattering differential cross section,
with respect to energy loss E and solid angle 0, for ex-
citation of an electron from an initial state li) to a fi-
nal state l f) is given by

12o;r//dE d.A = (4/aoq ) l (f l
e''t'l i ) l2

~ (1/q') Im( —I/e),

where q is the momentum transfer and ao is the Bohr
radius. The momentum is related to the scattering an-
gle 8 and the momentum of the incident beam by
q = k (0 + 0, ), where 8, = AE/2EO, Eo is the kinetic
energy of the beam, and e(q, cu) is the longitudinal
dielectric response function of the solid, which for
small momentum transfers is equivalent to the optical
(transverse) response function.

The initial and final states of the exciton, li ) and
lf), in Eq. (3) can be expressed in terms of a product
of the exciton envelope function F„k(r) and single-
particle states for a hole in the valence band and an
electron in the conduction band. These single-particle
states can be represented as Bloch wave functions. 5

The matrix element in Eq. (3) then reduces to

&f le"'lI
&

= &uk, , luk+q, .& E.(r)

In this work we use relatively small values of q. We
assume therefore that (u„, lu„+, „) does not vary
much with momentum transfer and any momentum
dependence that this term has is neglected in the
analysis given below.

Samples were prepared by the evaporation of 200 A
of CuCl and NaF onto 100-A-thick self-supporting car-
bon films. Spectra were measured for a series of
momentum transfers between 0.1 and 0.5 A '. Spec-
tra of the carbon substrates were also measured at the
same energy and momentum transfers. The contribu-
tion due to the carbon substrate was then subtracted
from each spectrum by normalization of the carbon
spectrum to the total spectrum in the energy region
below the exciton; i.e., we assume that the CuC1 and
NaF make no contribution to the spectrum in the
transparent region. A series of spectra for CuC1 with
the background substracted are shown in Fig. 1.

To check our carbon subtraction we performed a
Kramers-Kronig analysis of our data taken over an en-
ergy range of 2 to 120 eV at a momentum transfer of
0.1 A ' and compared our results to previous optical
measurements with favorable results.

A nonlinear least-squares fit was made to the data
with use of the following model based on the
effective-mass approximation (EMA) which is a slight
modification of Elliott's treatment. The hydrogenic
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bound states are represented by a series of Gaussian
peaks. The n th peak is located at an energy
E„=Eg—EI,/n, with an intensity that is 1/n3 of the
n = 1 peak. Eb is the binding energy and Eg is the con-
tinuum threshold or true band gap. The lines are all
assumed to have the same width tT. The EM A
predicts a quasicontinuum formed by the discrete hy-
drogenic series as n approaches infinity that connects
smoothly with the true continuum that starts at Eg.
The continuum threshold does not appear as a distinc-
tive feature in the data and so we treat Eg as a variable
parameter in our model. We model the spectrum
above the threshold energy by a step function at Eg
with amplitude 5 and a straight line of slope m passing
through Eg convoluted with a Gaussian line shape.
The Gaussian is assumed to have the same width as
the peaks used to model the bound states. This as-
sumption is reasonable since the width is due to instru-
mental and phonon broadening, the first of which is
certainly and the second likely to be the same for both
the bound and the continuum states.

The CuC1 exciton has a radius of 7.03 A. This is
larger than the Cu-Cl bond length of 2.354 A (only
15% of the charge is within the Cu-Cl bond length), so
that the treatment of it as a Wannier exciton is fairly
well justified. In NaF the n = 1 exciton has a radius
that is approximately half of the alkali-halogen bond
length and the Wannier model fails. It is possible,
however, to modify the simple Wannier-Mott model
to make corrections for the fact that the n = 1 exciton
is tightly bound and approximately unscreened by the
surrounding atoms. In our model we include dielec-
tric screening only for the discrete states with n ~ 2.
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FIG. 1. Transmission electron-energy-loss spectra of
CuC1 at different momentum transfers. Dots, experjment;
solid line, fit obtained with use of the model described in the
text.
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The data at each momentum transfer were fitted
over the energy ranges 2.9 to 4.8 eV for CuCI and 9.6
to 14.0 eV for NaF, with this model. The results of
this fitting procedure for CuC1 are shown as solid lines
in Fig. 1. The reduced X for each fit was typically 1.5,
the worst case being a X of —7 for the O. S-A ' NaF
data.

It is a simple geometry problem to show that the
continuum threshold energy moves upward with q
with an effective mass equal to m, +mz. Therefore,
by locating both the exciton peak and the continuum
threshold for a range of momentum transfers, we can
directly measure m, + mz and M . Figure 2 shows the
dispersion of the exciton peak and the threshold ener-
gy for both samples. The solid lines are the results of
a linear least-squares fit to the data. The fact that the
exciton and continuum slopes are different shows that
the exciton mass M' is different from the effective
mass of a noninteracting electron-hole pair in the same
bands, as predicted by Mattis and Gallinar.

What is the physical origin of this mass difference~
Two elements appear to be necessary for this effect to
occur. The first is the nonparabolicity of the exciton
energy as a function of momentum. Over the range of
momenta included in Fig. 2 the energy is clearly para-
bolic. At higher momenta, however, the data fall
below the straight lines drawn and become horizontal
at the zone boundary. If the energy were parabolic for
all values of q, Galilean invariance would apply and no
mass difference would exist.

The second necessary element is the width of the
exciton wave function in momentum speace as pointed
out by Egri. s When an exciton is created near q =0
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FIG. 2. Dispersion of the exciton peak, E~, and continu-

um energy, Eg, for CuC1 and NaF. Dots, experiment; solid
line, linear fit to the data. Calculated and experimental er-
rors are smaller than the dot size.

the center of the wave function is in the parabolic part
of the excitation curve. The wave function tails, how-
ever, reach out to the nonparabolic regions, giving rise
to the mass difference.

From the dispersion curves the following effective
masses are obtained: (3.6+0.3)mp for the exciton
mass and (2.4+ 0.3)mp for the sum of the effective
electron and hole masses in NaF. For CuC1 we obtain
(1.23 + 0.03)mp and (0.83 + 0.03)mp for these
masses.

We now compare these results with what is expected
from Eq. (1). The exciton binding energy Eb can be
decomposed into kinetic L and potential energy V,

'

E~ = —(E + V) ~ 0. In the case of the Coulomb po-
tential in the EMA limit, L is related to V by the virial
theorem: L = ——,

'
V. Using this theorem and our

measured values of the masses we can calculate the
value of the parameter 8' in Eq. (1). We obtain
values of —5.0 and —0.6 eV for NaF and CuCI,
respectively. Photoemission experiments on NaF
give a value of 4.9 eV for the width of the valence
band. Assuming approximately the same width for the
conduction band gives good agreement with the value
that we determine here. Theoretical calculations of
the valence bandwidth in NaF give values that vary
from 0.7 eV, in a linear combination of atomic orbitals
calculation, 'p to 3.4 eV in a tight-binding calculation. "
For CuCI our value of 0.6 eV is smaller than the typi-
cal value of —2.0 eV obtained from band-structure
calculations' ' and photoemission experiments. '
Stated simply, our observed mass difference is about
what is expected for NaF, but is greater than that
predicted by Eq. (1) for CuCl.

our value of 1.23mp for the translational mass of the
CuC1 exciton agrees well with a value obtained from a
measurement of the wavelength shift of the exciton
absorption line as a function of the CuC1 microcrystal-
lite size. ' Apart from this experiment our result is in
strong disagreement with other measurements. These
experiments may be divided into two groups: direct
determinations of the exciton mass and indirect or
model-dependent measurements. An experiment that
directly determined the mass is a two-photon Raman
measurement'6 at 1.6 K that measured the dispersion
of the longitudinal and transverse excitons out to 0.06
A ' and determined masses of 3.14mo and 2.3mo for
the longitudinal and transverse masses, respective1y.

Indirect determinations of the exciton mass have
been obtained by the measurement of exciton —free-
electron interactions'~ and exciton-exciton interac-
tions' and from the modeling of the hyperfine contri-
butions to the exciton absorption spectrum with a
nonhydrogenic model. These experiments give elec-
tron masses of 0.43mo, 0.44mo, and 0.415mo, respec-
tively, and hole masses of 4.2mp, 3.6mp, and 20mp,
respectively. All of these experiments are performed
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at energies that are less than or comparable to the en-
ergy of the LO phonon (tcoo=27 meV) in CuCl. In
our experiment we create excitons much higher above
the zone-center minimum than the LO phonon ener-
gy. Our mass is therefore free of polaron-coupling ef-
fects.

If we assume that our measurement gives a value
for the bare exciton mass whereas previous experi-
ments measure a polaron mass then it is possible to
evaluate the exciton-polaron coupling constant. Tak-
ing the bare exciton mass as 1.23mo and the coupled
mass to be 3.14mo, and assuming the simplest form
for the coupling, M'= M(1+ a/6), gives a value of
9.3 for a. This is the first direct measurement of the
polaron coupling constant for an exciton, as opposed
to a free electron or hole.

In a small exciton the polarization clouds of the
electron and hole tend to neutralize each other, '9 so
that the calculated polaron mass of the exciton is less
than the sum of the free electron and hole polaron
masses. Upon the assumption that the electron does
not couple to the phonons, this gives a lower limit of
9.3 for the coupling constant of the free hole.

Kleinman and Mednick' made a self-consistent
band-structure calculation of CuC1 and have calculated
the effective band masses. For the conduction band
they obtain a value of 0.417rplo in good agreement
with experiments. This calculation gives hole masses
of 1.477mo and (0.969—3.101)mo. These values indi-
cate that, as they suggested, the electron does not
form a polaron in CuC1 while the hole does. With the
assumption of an electron mass of 0.42mo, our mea-
surements indicate a hole mass of 0.42mo, consider-
ably smaller than the predicted value.

Several points about the method of analysis of the
data require further discussion. The data were fitted
with a model based on the EMA. Even though good
fits to the data were obtained, one can question wheth-
er this is the most accurate model to describe these ex-
citons. This model has been used by other authors20
to analyze data in cases where the exciton is known to
be of the Frenkel type. We use the model only to
parametrize the data, in particular to locate the ener-
gies of the exciton and the continuum. The peak ener-
gies and therefore the exciton masses are model in-
dependent. Since there is no feature in the spectrum
that clearly shows where the continuum energy is, its
value is model dependent. However, using this model
to fit the spectra obtained from the Kramers-Kronig
analysis gives values of 1.4 + 0.1 eV and 170 + 10 meV
for the NaF and CuCl exciton binding energies which
agree with the accepted values of I.S eV and 180 meV,
and so we feel confident that our determination of the

continuum energies is accurate and that their disper-
sions are indeed different from that of the exciton.

We have obtained preliminary data on three addi-
tional insulators which all show the Mattis-Gallinar ef-
fect. This appears to be a general property of excitons.
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