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Prediction of High-Energy Spin-Wave Excitation in Iron
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Calculations have been made of inelastic-neutron-scattering cross sections for ferromagnetic
iron. Quite unexpectedly, a rich picture of high-energy collective excitations has emerged. In par-
ticular, ‘‘optic’’> spin-waves modes with energies ranging to about 750 meV are predicted. Thus,
iron is an ideal candidate for a novel high-energy-transfer experiment on recently developed high-

energy neutron sources.

PACS numbers: 75.30.Ds, 61.12.—q, 75.10.Lp

Itinerant-electron theory has been very successful in
giving a description of the low-temperature spin waves
in the 3d transition-metal ferromagnets nickel and
iron. Recent predictions! 2 of distinct high-energy col-
lective excitations above 100 meV in nickel were sub-
sequently confirmed®* by inelastic neutron scattering
using the hot source at the Institut Laue-Langevin.
Some discrepancies in detail exist between theory and
experiment but, in broad terms, they are in agreement.
In this Letter we report results of calculations for iron,
an itinerant-electron ferromagnet with spin-splitting
energy =2 eV, some 5 times the value in nickel.
From these calculations, we predict the existence of
new collective excitations in Fe which exist both
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throughout the Brillouin zone and to energies much
higher than were previously thought possible.

The theory on which the calculations are based is
summarized as follows. The spin-polarized electronic
wave functions are expanded as

Unko (1) = 3, 8,0 (K, (1), (1)

where n, k, and o are band, wave-vector, and spin la-
bels, respectively. The {qS,L(r)} are symmetry orbitals
with u a symmetry label which runs over the nine
(s,p,d) symmetry terms. The {a,,,(k)} are the corre-
sponding expansion coefficients. Within the random-
phase approximation the transverse part of the mag-
netic inelastic cross section can be written as
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where F is a form factor, and Q=G +q with G a reciprocal-lattice vector and q restricted to the first Brillouin
zone. The sum is taken only over the d-symmetry terms which are the dominant ones. The I" matrix is defined by
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where fy, are the Fermi occupation numbers and the W,,,, are matrix elements of a self-consistently screened
electron-electron interaction:

Wuv‘qf=f¢”,(r)¢v(rl) U (1, 1), (1) e (1) dr . )
The expression for the electronic energy within the random-phase approximation is then
E(nko) =e(nka) + 3, dpuo(K) pyo (K) Wy (N] =N} ), (%)
nuv :
Ng = lz | @ppo (KD 2 frors (6)
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where NJ is the number of electrons of symmetry type u and spin o.

In past work the approximation has been made that W is diagonal (i.e., only W s 18 nonzero), but the W sun
were permitted to take on different values for the e, and t,, components. This allowed the development of a
theory based on a two-parameter fit to static magnetic properties. The cross section as defined by Egs. (2) and (3)
is, however, not rigorously invariant with respect to point-group rotations with a diagonal W; i.e., results for ¢
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along [100] and [001] might differ. Numerically, the
discrepancy in nickel is minimal and does not affect
previous results. In iron this effect is also minimal for
the low-energy studies previously performed but, be-
cause of the strong e, characteristics, it cannot be
neglected in higher-energy studies.

There are several different, symmetrically correct,
choices for the form of W, which can be characterized
by a small number of parameters. The simplest is to
include, in addition to the diagonal terms, elements of
the type W,,,,, with the condition W,,,,= W ,,,, for
all v, where u and v label orbitals belonging to the
same irreducible representation. Because of the partic-
ular form of the rotation matrices associated with the
cubic point group, it suffices to implement this addi-
tion to W for the e, components only. The numerical
results presented in this paper were obtained with this
two-parameter approximation. The spin-polarized
band structure used in the calculations is the same as
that given in Ref. 1, where the two potential parame-
ters were chosen to reproduce the measured moment
and its symmetry character. With the band structure
generated in this way, the cross section [Eq. (2)] is
determined uniquely; i.e., there are no adjustable
parameters. The cross-section expression was numeri-
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FIG. 1. Spin-wave dispersion curve for q along the [100]
direction.

cally evaluated with wave functions and electronic en-
ergies obtained from a self-consistent solution of the
band-structure equation, and Brillouin-zone sums were
evaluated by use of the tetrahedron method.

Results for q along [100] are shown in Figs. 1 and 2
in the form of the spin-wave dispersion curve and a
contour plot of the scattering intensity. These results
were obtained from constant-q calculations of the
cross section as a function of energy. Peaks in the
scattering cross section correspond to spin waves only
if the energy of the peak coincides with a resonance in
the particle-hole Green’s function, i.e., to a particle-
hole bound state. The most remarkable feature of
these results is the prediction of ‘‘optic’> modes with
the energy of the upper branch reaching about 750
meV at the zone boundary. Notice also the relatively
complicated nature of the contour plot at about half-
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FIG. 2. Intensity contours, in arbitrary units, for q along
the [100] direction.
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way to the zone boundary. A plot of intensity against
energy at q=(0.5,0,0) (units of 27/ay) reveals a
three-peak structure: a strong upper one at — 400
meV and two much weaker and broader ones at lower
energies. The contour plot emphasizes the fact that
the upper mode is quite sharp for both constant-q and
constant-E scans. It is possible to express Eq. (2) as
the sum of contributions with different symmetries.
When this is done for q=(0.5,0,0), three of the
terms in the sum show well-defined peaks, each one
corresponding to a vanishing of the real part of a pole
in the electron-hole Green’s function. One can, there-
fore, understand the behavior in terms of three in-
teresting spin-wave modes: two optic and one acous-
tic. The lowest-energy branch in Fig. 1 was not contin-
ued out to |q|=0.5 because its corresponding peak is
too broad to be considered a collective excitation. Be-
cause of problems associated with defining what is and
what is not a spin wave, we feel that contour plots of
the type given in Figs. 2 and 3 are a better way to
display our results than the plotting of dispersion
curves. With regard to the symmetry, the acoustic
mode has mixed e, and #,, character, while the optic
modes derive from interband transitions having virtu-
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FIG. 3. Intensity contours, in arbitrary units, for q along
the [111] direction.
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ally pure e, character.

Results for q along [111] are shown in Fig. 3 in the
form of a contour plot of the scattering intensity. As
in nickel? a single branch extends to the zone boun-
dary. Energy transfers occur up to a little over 200
meV. Experiments® have been carried out with use of
the spallation neutron source at Argonne National
Laboratory to energies of 160 meV. Current time-of-
flight measurements using spallation sources present
what is essentially a composite of scatterings with a
specific magnitude of ¢ but for all directions. Results
from the intense-pulsed-neutron-source experiment’
could hardly be interpreted in terms of the [100]
results shown in Figs. 1 and 2 but are in good agree-
ment with results for q along [111] (Fig. 3), which ap-
parently are dominating the experimental observation.

The qualitative form of the results given in Figs. 1
and 2 are fairly insensitive to the precise values of the
parameters of the problem. Under small changes in
the parameters, the three-peak structure at ¢
= (0.5,0,0) remains, but the two weak components
can become more or less well-defined and can vary
considerably in their positions. The strong feature at
E~400 meV changes very little, however. The
results for the [111] direction are more sensitive to
small variations in the parameters. A two-branch
structure, for example, is easily obtained in this direc-
tion. The single branch observed in the intense-
pulsed-neutron-source experiment, however, appears
to be consistent with the choice of W and the resulting
band structure given in Ref. 1.

With regard to the sensitivity of the results to the
form of the potential, we have also considered the ef-
fect of including W,,,, terms for the #,, component.
Preliminary results indicate that this can have fairly
strong effects for the [111] and [110] directions but
has no effect at all in the [100] direction. Calculations
for more general forms of W are currently underway.

The experimental observation of the high-energy
excitations is, therefore, likely to provide a very exact-
ing test of models for both the band structure and the
screened electron-electron interaction in the ferromag-
netic transition metals. The number of modes found,
along with their measured dispersion curves, will pro-
vide important information about the magnitude of the
various W parameters. In addition, the search for the
high-energy collective (‘“‘optic’’) excitations predicted
in iron should provide an exciting challenge for experi-
mentalists working at the limits of capability of reactor
sources, and provide a novel high-energy-transfer ex-
periment on a spallation source.
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