
VOLUME 55, NUMBER 25 PHYSICAL REVIEW LETTERS 16 DECEMBER 1985

Global Universality at the Onset of Chaos: Results of a Forced
Rayleigh-Benard Experiment

Mogens H. Jensen, Leo P. Kadanoff, and Albert Libchaber
The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

Itamar Procaccia
Department of Chemical Physics, The 8'eizmann Institute of Science, Aehovot 76100, Israel

Joel Stavans
The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

(Received 15 October 1985)

We study an experimental orbit on a two-torus with a golden-mean winding number obtained
from a forced Rayleigh-Benard system at the onset of chaos. This experimental orbit is compared
with the orbit generated by a simple theoretical model, the circle map, at its golden-mean winding
number at the onset of chaos. The "spectrum of singularities" of the two orbits are compared.
Within error, these are identical. Since the spectrum characterizes the metric properties of the en-
tire orbit, this result confirms theoretical speculations that these orbits, taken as a whole, enjoy a
kind of universality.

PACS numbers: 47.20.+ In, 05.45.+b, 47.25.—c

In the study of the transition to chaos most theoreti-
cal attention has been paid to the behavior near special
points in phase space. Thus Feigenbaum' concentrat-
ed upon the region of the maximum of the period-
doubling map, Shenker looked near the inflection
point of the circle map, etc. In experimental situa-
tions, such distinguished points in phase space are not
readily discernible. If one is to look experimentally for
universality, one ~ould do well to seek more global,
but still universal, features of the phase-space orbits.

In this Letter we report experimental results which,
together with theoretical analysis, show that critical or-
bits in phase space at the onset of chaos exhibit global
universal properties. The example discussed here is
the cycle with golden-mean winding number at the
point of breakdown of a 2-torus. The experiment is a
periodically forced Rayleigh-Benard system with mer-
cury as a fluid. Recent measurements on this system
revealed two scaling indices: the index for the ratio
between two successive Fibonacci resonances and the
dimension of the structure of mode locking. ' Both
were in agreement with the indices found for circle
maps. %e therefore compare the experimentally ob-
served critical orbit with the corresponding orbit in the
circle map.

In order to examine global scaling properties it is not
sufficient to measure the dimension of the attracting
set; the set certainly contains more topological infor-
mation than can be characterized by a single number. '"
To achieve a characterization that more fully describes
those properties of such sets which remain unchanged
under smooth changes of coordinates, it has been pro-
posed to use a continuous spectrum of scaling indices.

These spectra display the range of scaling indices and
their density in the set. To clarify what we mean, con-
sider the experimental cycle displayed in Fig. 1. One
sees with bare eyes that the time series is concentrated
with various intensities in different regions. The spec-
trum that we use quantifies this variation in density on
the attractor, and allows us to show the similarity of
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FIG. 1. The experimental attractor in two dimensions.
2500 points are plotted. Note the variation in the density of
points on the attractor. Part of this variation is, however,
due to the projection of the attractor onto the plane. The at-
tractor is nonintersecting in three dimensions, in which it
was embedded for the numerical analysis. In the absence of
experimental noise the points should fall on a single curve.
The smearing of the observed data set is mostly due to the
slow drift in the experimental system during the run over
about 2 h. Our method of analyzing the data to secure f vs
o. (see Fig. 2) is intended to minimize the effect of the slow
drift. This is realized by estimating the recurrence times
which experimentally are matters of minutes rather than
hours.
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this cycle to sets produced by model equations that
describe the onset of chaos via quasiperiodicity. 8 In
fact, the approach proposed here constitutes a rare op-
portunity for an extensive quantitative comparison of
experiments with universal results obtained from
theoretical models.

The experiment which yielded the critical golden-
mean trajectory has been described previously. The
experiment studies a small-aspect-ratio Rayleigh-
Benard system of size 0.7 x 0.7 && 1.4 cm with two con-
vective rolls present. For a low-Prandl-number fluid
like mercury, as the heat flux increases beyond the
convection threshold R„the system undergoes a Hopf
bifurcation, called the oscillatory instability, into a
time-dependent periodic mode. This mode is charac-
terized by an ac vertical vorticity otherwise absent in
the static roll pattern. This oscillation is one of our
two oscillators (frequency = 230 mHz). The second
oscillator is introduced electromagnetically, mercury
being an electrical conductor. An ac current sheet is
passed through the mercury and the system is im-
mersed in an horizontal magnetic field (0 = 200 G)
parallel to the rolls' axes. The geometry of electrode
and field is such that the Lorentz force on the fluid
produce ac vertical vorticity. In this way the oscillators
are dynamically coupled. During the experiment the
Rayleigh number is kept fixed at 8 = 4.09R, giving a
large amplitude to the first oscillator.

The nonlinear interaction between the oscillators is
controlled by the amplitude of the injected ac current.
A signal is obtained from the experiment by means of
a thermal probe located in the bottom plate of the cell.
The winding number, which is the ratio between the
two frequencies, is kept close to the golden mean, i.e.,
within 10 . Time series are obtained by observation
of the temperature signal at discrete times separated by
the period of the forcing.

The theoretical work is aimed at estimating in a
quantitative fashion how "bunched" the density on
the orbit might be. In technical terms this bunching is
a description of singularities in the probabilities of the
orbit points. Less technically, one can view a particu-
lar orbit point x;, in a phase space like that of Fig. 1,
and ask what is the probability for other points falling
within the small distance, I, of this one. Call this prob-
ability p;(1). One can describe this probability by de-
fining an index n; (1) via

In typical sets the scaling index o.; takes, for small l, a
range of values between o. ;„and o. „.We refer to
this situation as a spectrum of singularities.

To analyze the experimental time series, we make
use of a key theoretical idea that fractal sets in general,
and critical orbits in particular, can be described as in-
terwoven sets of singularities. The density of singu-

n; (1) = —1nm;/Inl.

In principle, the remainder of the analysis is very
simple. One estimates how many n;(1) values live in a
given range, substitutes that estimate into Eq. (2), and
then chooses some very small value of 1 to find f (n).
In practice, given only a moderate amount of data, one
cannot obtain a good estimate of f (n) by this direct
method. Instead, we employ6 an indirect method
which smooths the data and gives an efficient calcula-
tion of f (n). To obtain this smoothness, we use the
data to calculate the auxilary quantity

I (q, l) = (p;(1)' ') = (m '), (4)

where the brackets represent an average over all the
trajectory elements i. The whole point of using the
"partition function" Eq. (4) is that it is a smooth
function of I and q and, for I « 1, is given by a power
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larities of type o. , o. ;„&o. & o, ,„,is determined by
an index f that can be interpreted as the dimension of
the set of singularities of this type. In other words, if
the system is divided into pieces of size l, then the
number of times, n (n, 1), that n takes on a value
between n and n+ dn is of the form

n (n, l) = dnp(n) 1

where p(n) is nonsingular with respect to 1. The intui-
tive meaning of n,

„

is that it is associated with the
most rarefied regions of the measure, whereas n
with the most concentrated. Typically, f'(n, „)
=f(n;„)=0. Other types of singularities between
n,„and n;„live on subsets of dimension f;
0 & f & Do (Do being the dimension of the set). The
functions f (n) are universal functions for critical cy-
cles like the trajectory with golden-mean winding
number at the onset of chaos via quasiperiodicity. 2

Another key point is that these functions are smooth,
in contrast to the universal scaling functions of the
type suggested by Feigenbaum, ' which are nowhere
differentiable (see for example Fig. 10 of Ref. lb).
The reason for this important difference is that the
latter functions are constructed by following the local
changes in scaling everywhere, ' whereas the former
are based on finding the global density of scaling in-
dices of each type.

The n; (1) of Eq. (1) are estimated in a very simple
fashion: Start from the point x; on the trajectory.
Count the number of steps along the time series re-
quired before a point returns to within 1 of the starting
point. We call the number the recurrence time and
denote it m;. We shall now make use of the fact that
the orbit is conjugate to a pure rotation with an ir-
rational winding number, and is therefore ergodic.
Thus, we simply estimate p, (l) as the inverse re-
currence time, (m, ) ', and find
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of/,
1(q I) —I «& (5)

This r (q) is related to the generalized dimensions, D»,
of Hentschel and Procaccia' by D» = (q —1) 'r(q).

From the point of view of this paper r (q) is not im-
portant in itself. Instead it is a kind of generating
function which can be used to determine the function
f'(n) via the pair of formulas (derived in Ref. 6),

(q) =d (q)/dq,

f(q) =7(q) —q d7/dq.
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This is essentially a Legendre transformation, as used
in statistical thermodynamics. Once q is eliminated
from the pair of Eqs. (6), we discover that we havef (o.) defined in a range of u values n;„&n & n

An example of a theoretical f(n) curve calculated
in this manner is shown as the curve in Fig. 2. The at-
tractor is the critical cycle of the circle map2 7 s

8„+t = 8„+0 —(IC/2n. ) sin2»r H„at the critical value
L = 1 and 0 = A~, where the orbit has a golden-
mean winding number. Here, 7 (q) was evaluated by
calculation of the average Eq. (4) for several l values
and then finding» as the slope of a straight line fit of a
plot of lnI vs lnl. The value of o. ,„,which is also
D agrees with the theoretical expectation

n,„=Inca'/lnas ' = 1.8980. . . ,

where cu' is the golden mean cu'= (JS—1)/2 and as
is the universal local scale factor in the vicinity of the
critical point 0 =0, Q.s

= 1.2885. . . . This is the most
rarefied region in the trajectory. This region is
mapped onto the most concentrated region in the set
which is characterized by the u value n;„=Inca'/
lnus 3=0.6326. . . . The curve turns around at the
value of f which is f =Do ——1. This is also to be ex-
pected since the support of the measure is the circle,
which is one dimensional.

The experimental data were similarly analyzed. On
the basis of a time series of 2500 points embedded in a
three-dimensional space we first calculated I as re-
quired by Eq. (4). Plotting again lnI vs In/, we typical-
ly fitted the r's with over fifty different values of 1

ranging over two decades. The f (0.) values were
computed via Eqs. (6) with the result shown as the
dots in Fig. 2. For small q (iq i & 1) the scaling was in
general best for the largest values of l. As iq I was in-
creased, the best scaling regime gradually moved to-
wards lower values of I. This is expected since high
iq i values correspond to isolated regimes on the at-
tractor. The accuracy of the fits was always very good
for positive q's (corresponding to the leftmost branch
of the curve), and we estimate the error bar on the
point (D, Q) to be a few percent. The accuracy was
less for negative values of q (corresponding to the
rightmost branch) and the error bar on the point

FIG. 2. The f (u) spectrum calculated for a critical circle
map with golden-mean winding number is shown by the
curve (Ref. 6). The curve ends in the points (D, O) and(D, O), which are shown by the two large dots. The
f'(0, ) estimates for the experimental time series are marked
by the smaller dots. The error bars are estimated by varying
the range of I used to fit the data.

(D, Q) is around (10—12)%. The accuracy of the
maximum point of the curve (i.e., Da) is indicated by
a vertical error bar. Theory and experiment agree.
This agreement supports our conjecture that this
Rayleigh-Benard system at the onset of chaos and the
critical circle map belong to the same universality
class. We note in passing that from the value of u
(and also of n;„)one can read immediately us, cf.
Eq. (7). To the best of our knowledge this is the first
direct measurement of this universal scaling number.

To conclude we note that the raw experimental orbit
in its reconstructed phase space looks nothing like the
orbit of the circle map. To the eye, it does not appear
to lie on a circle. It is twisted and contorted in a com-
plicated way. Our results demonstrate, however, that
from the metric point of view these two sets are the
same within experimental accuracy. To date we are
not aware of any other approach that can lead to such a
strong conclusion.
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