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Hybrid Stochastic Differential Equations A.pplied to Quantum Chromodynamics
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Hybrid stochastic differential equations are applied to the thermodynamics of lattice gauge theory
with dynamical fermions. The tuned algorithm is much more efficient than pure Langevin or
molecular-dynamics equations. The method is applied to quantum chromodynamics and the abrupt
finite-temperature crossover between hadronic matter and the quark-gluon plasma is elucidated.
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(F(q)) = Z '
J dq F(q)exp[ —S(q) ].

Such averages are computed in a Langevin approach
through the stochastic differential equation in a new
"time" variable ~,

q(~) = —8 /S6 q+v)(r),

where Vi(~) is white noise,

(2a)

(7l (~)q (r ') ) = 25 (r —~'), (2b)

and ( ) indicates a time average. The expectation
value of Eq. (I) is computed in this scheme as a time
average,

Among the most challenging problems in comput-
er-simulation techniques are those involving dynami-
cal fermions. Naive Monte Carlo simulation methods
are not able to handle fermionic problems because
they do not respect the antisymmetric character of fer-
mion wave functions in a practical fashion. However,
several new algorithms have been suggested for sys-
tems with dynamical fermions which appear to be prac-
tical in three and four dimensions. Two of those
methods, the molecular-dynamics' and the Langevin
equations, are particularly promising since their con-
vergence properties and errors, both systematic and
statistical, can be understood in examples and can be
monitored in large-scale simulations. It has recently
been pointed out that there is a simple connection
between these two algorithms and that hybrid algo-
rithms exist which have superior properties to both
original methods. 3

The motivation for the hybrid algorithms is based on
several simple observations. Consider a problem of
one stochastic Bose degree of freedom q, an action
S(q), and ensemble averages

with

&.+ t
—&.= 2~ ~ 2 (4b)

The strength of the Langevin method is that the ap-
pearance of noise in the evolution equation guarantees
that its long-time properties are correct; i.e. , the path
eventually covers all of phase space with the appropri-
ate Boltzmann weight. Its problem is that the noise
term 5(„ tends to dominate the short-time evolution
of the equation, so that the trajectory explores phase
space slowly.

Another way to study the original system is through
the molecular-dynamics algorithm of its microcanoni-
cal ensemble. ' The equation of motion is purely
deterministic,

q (7 ) = —BS/Bq, (5)

q. +t = q. + —'(q. +t —q. -t) ——,'~'S'(q. ),

and Eq. (3) is employed again to calculate expectation
values of observables. For discrete time steps, Eq. (5)
becomes

~ t
= 2(4 —

qn g
—b, S'(A),

with v„+ t
—~„=A. The strength of the molecular-

dynamics approach is that for small times the trajectory
samples phase space very efficiently since q(r) fol-
lows the equation of motion deterministically. Its
weakness lies in the fact that for long times q(~)
might fail to cover uniformly the energy shell of the
microcanonical ensemble because of hidden conserva-
tion laws or the failure of the ergodic hypothesis.

Since the strengths of the Langevin and molecular-
dynamics algorithms are complementary, it is sensible
to seek a hybrid method. 3 If one rewrites Eq. (6) as

(F(q) ) = lim T ' F(q (7 ) ) dt. (3)
then we note the following correspondences:

q„+ t
= q„+5(„——,

' 52S ( q„), (4a)

In a numerical simulation Eq. (2) is evolved in time
through discrete steps,
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(q„+t —q„ t)/2b„, probability pb„,

otherwise, (8b)

&a+i —&n =~

This correspondence suggests a one-parameter family
of algorithms. In this "hybrid" scheme a time step
will be executed by either the Langevin algorithm or
the molecular-dynamics algorithm with a probability
pA,

q„~ t
= q„+Au„——,

' 52S'(q„),

with

The algorithm can be optimized by a tuning of p so
that the short-time evolution of the trajectory has the
speed of the molecular-dynamics algorithm, while the
long-time evolution has explicit randomness in it to in-
sure the breaking of any hidden conservation laws and
the validity of the erdogic hypothesis. A study of the
Fokker-Planck equation yields a proof that Eq. (8)
simulates the path integral Eq. (1) as long as ph~ 1.3 4

For free fields, one can prove that the optimal pA is
twice the characteristic frequency of the system. 3 For
nontrivial systems, pA can be determined "experi-
mentally" by a study of the time correlations of the
observable of interest.

Recall the molecular-dynamics Lagrangean for lat-
tice gauge theory with fermions,

L = —,
' X U„(n)P U (n) + g@; [A (U)A (U)];,@,— z X@;@;—P X (trUUUU+Hc. ),

n, p,

where A (U) is the hopping matrix of staggered fer-
mions, P = diag (1, 1, 0), and @; is a complex field
residing on every other lattice site. The field @; and its
kinetic energy involving A ( U) A ( U) were invented
such that the molecular dynamics of I. is that of SU(3)
gauge fields coupled to four identical species of
colored quarks which obey Fermi statistics. '

To implement the hybrid algorithm on Eq. (9), we
use the fact that U, g, and @ appear in three quadratic
terms. Therefore, at any time step in the evolution of
the molecular-dynamics equations one can replace the
U fields, say, by a completely new field configuration
in the Boltzmann distribution exp( ——,'gUPU) by
standard formulas. Similarly, @ and @ can be replaced
by new random fields in the appropriate distributions
at chosen intervals. Some care must be exercised with

@ because of the matrix character of the second term
in Eq. (9). Details such as these will be presented at
length elsewhere. Extensive tests and algorithm tun-
ing on small asymmetric lattices which simulate finite
temperatures were made. The expectation value of
the pure-gauge-field action (the plaquette), the Wilson
line (the exponential of the negative of the excess free
energy for a heavy quark in the vacuum), (|llew) (the
chiral-symmetry order parameter), and quark and
gluon energy densities were measured. In Fig. 1 we
show the time-correlation data for the Wilson line.
The hybrid algorithm was run with a discrete time step
dt=0.02 for 10000 sweeps on a 2&&43 lattice, and
noise was applied at regular intervals ranging from
every step (Langevin) to every 1000 sweeps. Figure 1

shows that the minimum correlation time occurs when
noise is applied every 50 +20 sweeps. Since dt = 0.02,
this corresponds to a "physical time" of 1+0.4 unit.
Note that the hybrid algorithm is more than 3.3 times
as efficient as the Langevin limit. In fact, the correla-
tion times for all the matrix elements could be reduced
to 2 or 3 time units by application of noise to the sys-

tern at intervals of 0.5—2 time units. This favorable
result was also found on larger lattices, 4x83 and
6 && 10'.

Next the algorithm was applied to the thermo-
dynamics of quantum chromodynamics. The lattice
theory was simulated on a 4&& 8 lattice with bare quark
masses of 0.10, 0.075, and 0.050 so that zero-mass ex-
trapolations could be done. Typically, 5000—15000
sweeps were made at each coupling P in the vicinity of
the interesting phase transition. We expect a
fluctuation-induced chiral-symmetry —restoring transi-
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FIG. 1. Correlation time of the Wilson line vs the interval
between Langevin steps.
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tion in the continuum limit. However, although the
pure gauge field has a first-order deconfining phase
transition signaled by a discontinuous Wilson line, that
behavior should not persist in the theory with dynami-
cal quarks because quark pairs screen long-range color
forces at all temperatures. However, the chiral-
symmetry —restoring transition could result in a discon-
tinuous change in the dynamically generated quark
mass which could affect the thermodynamics of the
system dramatically. We located the critical couplings

P for both the pure gauge theory and the full theory
with light quarks. The pure gauge theory showed a
clear first-order deconfining transition at P = 5.725
+0.025, and the full theory with a bare quark mass of

m =0.050 had a chiral-symmetry —restoring transition
at P = 5.000 + 0.025. The character of these transitions
were compared by a search for metastable states as
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shown in Fig. 2. In Fig. 2(a) we show the time history
of the Wilson line for the pure gauge theory at
P = 5.725 for both a confined and an unconfined initial
configuration. 10000 sweeps of the algorithm were
run with dt =0.02 with noise applied every 0.75 time
unit to the U fields. The two-state signal in Fig. 2(a)
is clear evidence for a first-order transition. The same
procedure was followed for the theory with light fer-
mions at P = 5.025, and the evidence for a hard first-
order transition is lost, as shown in Fig. 2(b). Howev-
er, as shown in Fig. 3, the transition between the had-
ronic and quark-gluon phases is very abrupt —the en-
ergy density e/ T, for example, changes from
0.00+5.00 to 42+4.0 as P changes from 5.000 to
5.025. If asymptotic freedom applies to these data, the
fractional change of the physical temperature over this
P interval is only 3.8%. In an extended publication the
simulation data at m =0.10 and 0.075 will be used to
extrapolate these curves to zero mass. 6 The statistics
accumulated and the resolution in P are far superior to
earlier simulations, 7 and they strengthen the contro-
versial result that the finite-temperature transition in
quantum chromodynamics is abrupt.

Clearly there is much room for further algorithm
development and applications. The algorithm may be
improved by acceleration of the time development of
its infrared modes. In addition, asymptotic freedom
should be verified for lattice gauge theory with light
fermions.

The authors thank D. K. Sinclair and J. Polonyi for
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FIG. 2. (a) Coexistence of states at the deconfining phase
transition in the pure gluon theory. (b) Same as (a) but
with dynamical ferrnions having bare mass 0.050.
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FIG. 3. Chiral-symmetry —restoring phase transition at
finite temperature. The bare fermion mass is 0.050, and the
Wilson line, (PP), and total energy density e/T are plot-
ted.
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