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A particle in a chaotic region of phase space can spend a long time near the boundary of a regular
region since transport there is slow. This "stickiness" of regular regions is thought to be responsi-
ble for previous observations in numerical experiments of a long-time algebraic decay of the parti-
cle survivial probability, i.e., survival probability —t ' for large t. This paper presents a global
model for transport in such systems and demonstrates the essential role of the infinite hierarchy of
small islands interspersed in the chaotic region. Results for z are discussed,

PACS numbers: 05.45.+b

Intrinsic transport due to chaos in Hamiltonian sys-
tems is an essential element in the consideration of a
number of physically important situations (e.g. , con-
finement of plasmas with chaotic magnetic-field-line
trajectories, charged-particle heating by wave electric
fields, celestial mechanics, etc.). In many cases the
phase space has both regular and chaotic regions. A
particle initialized in a chaotic region can spend a long
time in the vicinity of the boundary of a regular region
since transport there is slow. This "stickiness" of the
regular regions can be an essential aspect of transport
in such systems. ' It is our goal in this Letter to
develop a global model which describes these situa-
tions.

A basic consequence of stickiness has been demon-
strated in computer experiments on two-dimensional
area-preserving maps done by Karney' and by Chiri-
kov and Shepelyanski. Imagine that there is some
large region surrounded by an outermost Kolmo-
gorov-Arnol'd-Moser (KAM) island curve4 and that
outside this island there is a connected chaotic region
with interspersed smaller islands. Say that we draw a
big circle which has the large island at its center and
also encloses a substantial area of the outer chaotic re-
gion. Now initialize a large number No of randomly

chosen initial conditions in the chaotic region, and
evolve them under the map. If a particle leaves our
big imaginary circle, we regard it as being lost from the
system. The survival probability is then taken to be
F(t) = N(t)/No, where N(t) is the number of parti-
cles still within the large circle at time t. From the
results of Refs. 1 and 2, F(t) appears to have a long-
time algebraic (as opposed to exponential) decay;
F(t) —t ' with z =—1.5. An essential test of a model
of transport in a situation where there are chaotic and
regular regions is its ability to approximate these nu-
merically observed results. The model presented in
this Letter can be viewed as an extension of a previous
mode13 which correctly yielded an algebraic decay, but
with a much too large decay exponent (z=3.05 in
Ref. 3). In that model the small islands interspersed
in the chaotic region were ignored. The present work
shows how they can be accounted for and demon-
strates that their inclusion is essential.

We describe the transport of particles in a region
with regular and chaotic regions in terms of "cantori. "
Cantori are invariant Cantor sets that may be viewed
as remnants of KAM curves that have been destroyed
as a nonlinearity parameter is increased. Furthermore,
certain cantori can have very small average particle
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components, then DS = a.to-2. . .a.~ t. Thus DS
denotes the state just below S on the tree. Let Sl and
S2 be the state symbols obtained by adding a com-
ponent 1 or 2 to the end of the symbol sequence of S.
Thus Sl and S2 are the two states just above S on the
tree. Similarly 1S and 2S add a symbol at the begin-
ning of the sequence. In terms of Figs. 1 and 2, we
can view the numerical experiments described in Refs.
1 and 2 as initializing a large number of points in state

S= a-& and then asking what fraction F, (t) of these

has never entered state @ after t iterates of the map.
Thus, according to Refs. 1 and 2, F, (t) —t ' with

z = 1.5.
To complete our model, we characterize particle

motions by transition probabilities p(S S'), where
p(S S') is the "probability" that a particle in state
S will be in state S' after one iterate of the map (S' is
either DS, Sl, or S2), and we adopt the following
scaling hypotheses for p (S S'):

wi/et, if the last entry in S is 1,
p (DS~ S)/p (S~ DS) = '

g
' f (1)

et, if the last entry in S is 1,
p (S DS)/p (DS DDS) (2)

where wt, w2, et, and e2 are scaling constants. Equa-
tion (2) implies that

p(S DS) =P e" e2

where Po is a constant and A. (S) and p(S) are the
number of 1's and 2's, respectively, in the symbol se-
quence of S. For typical (nonnoble) outermost KAM
curves, the basis for the scaling hypotheses (1)—(3) is
numerical. 7 9 [Actually, there are fluctuations in the
ratios (1) and (2) with S, which our model ignores.
Thus (1)—(3) are only approximate. 8] Our estimated
(average) values for the scaling constants ares e&

= 0.382, e2 = 0.143, wt = 0.0532, and w2= 0.0142.
Figure 2 and Eqs. (1)—(3) constitute our basic model.
To test the reasonableness of this model, we now apply
it to the situation of the numerical experiments in
Refs. 1 and 2. The method of solution is similar to
that in Ref. 3.

It is convenient to use a quantity slightly different
from F . Namely, let R (t;S S') be the probability

that a particle in state S at time t = 0 first reaches S' at
I

time t. For small transition probabilities we may ap-
proximate t as a continuous, rather than as a discrete,
time variable. In that case, we have R(t;a&@).
= dF /dt, and R (t;at/) —t . '+' . Thus by

finding the long-time behavior of R(t;ot@-) we
can determine z. It is also convenient to introduce
another quantity, R "(t;S S'), which is the probabil-
ity that a particle in state S at time zero first reaches
state S' at time t without having been in any other
state between time zero and time t. Following Han-
son, Cary, and Meiss3 we call R(t;S S') the first-
passage time distribution, and we call R d( t; S S')
the direct-first-passage time distribution. R ( t;S

S') =—p(S S')exp[ —p(S) t], where p(S) is the
probability that a particle leaves S on one iterate,
p(S) =p(S DS) +p(S Sl) +p(S~ S2). For
p(S) (( 1, the probability that the particle has never
left S is approximately exp[ —p(S) t], and the above-
given expression for Rd follows.

The first-passage time distribution R (t;1 P)
obeys

R (t;1~ @)=R (t;~ @) +Jii dt'IR (t', 1~ 12)R (t —t', l2 P) +Rd(t', 1~ 11)R (t —t', ll ~ @)},

where we henceforth regard t as continuous. Equation (4) follows from the fact that particles arriving in S = @ can

do so either directly [the term R "(t;1 @)] or else by first making an "up transition" from 1 to la2. The up-

transition case results in the integral contribution to (4) over the time t at which the first up transition out of 1 is

made. Equation (4) can also be written as

R (t 1~ P) =R (t 1~ @)+[R (t 1~ 12)~R (t;12~ @)+Rd(t;1~ 11)'R (t;11~ @)],

where we use ' to signify the operation of convolution
in time. Similarly

R (t;12 qb) = R (t;12 1) ~ R (t;1 @),

and
R (t;11 @)= R (t;11 1)+ R (t;1 @).

The solution of this infinite hierarchy of coupled in-
tegral equations is simplified by use of the self-

similarity relations (1)—(3). From (3) all the transi-

tion probabilities governing R (t;11 1) are the same
as those governing R (t;1 @) if the latter are multi-

plied by ei. Thus time is stretched by the factor Ei ',
or R (t;11 1)= etR (wit;1 @). Similarly, R (t;12

1) = e&R (e&t;2 @). Noting from (1)—(3) that
p(lS 1S')/p(2S 2S') = et/e2, we have R (t;2
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@)= g2e, tg (e2e, 't;1 @). Hence, & (t;12
1) = ~28 (e2t;I $). For the sake of making the

symmetry 1 2 manifest, we introduce r =nPoett,
n = 1+ wt+ w2, and a function h (~) given by R (t;I

$) =—Poet h (r ), which also implies 8 (t;2 @)
= Poe2h (r). Inserting the above relations in (4), we
obtain the fundamental integral equation of the tree
model,

'+e '~k h,

wh««(r) = ~ '[wt~t h (~tr ) + w2~2h (e2r) ]. Equa-
tion (5) is a nonlinear integral equation (nonlinear be-
cause k involves h).

Noting the convolution structure of (5), we take the
Laplace transform; (5) then yields

result in a primitive model for transport which indi-
cates that the basic structure of transport is that of a
random walk on a tree. Questions concerning fluctua-
tions in the scaling parameters and the number of
relevant tree branches await further study.
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H(o) o-+1 —a wtH +w2—H
E)

(6)

where H is the Laplace transform of h, and o. is the
Laplace transform variable. The long-time behavior of
h(r) is determined by the singularity of H(o. ) with
the smallest real part. In particular, a power-law
dependence of h on r is reflected by a branch point of
H (o-) at o. = 0,

H(~) =f(~) + ~'g(~),
where fis analytic at o =0 and g(0)e0. Equation (7)
implies that h (7 ) —r '+ ' for large r. Substituting
(7) into (6) and expanding for small o. shows that (7)
is consistent with (6) with z given as the solution of

Wttt + W262 = 1. (8)

The solution of Eq. (8) for z yields z =—1.96, which
is somewhat larger than the observed value. This de-
viation may be due to the fact that Eqs. (1) and (2) are
approximate (the actual ratios fluctuate, s 9 as previ-
ously mentioned), or it might be due to the presence
of more than one island family between adjacent low-
flux cantori. In the latter case, our analysis is easily
generalizable, and instead of Eq. (8) we obtain

wK =1J J (9)

The result of including more island families, (i.e. , in-
creasing M) is clearly to decrease'o z, since each term
in (9) is positive and e& ( 1.

In conclusion, the considerations presented here
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