VOLUME 55, NUMBER 3

PHYSICAL REVIEW LETTERS

15 JuLY 1985

Absence of First-Order Phase Transition in SU(5) Lattice Gauge Theory
with Renormalization-Group—Improved Action
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Using Monte Carlo methods, we conclude that there are no first-order phase transitions in SU(5)
lattice gauge theory with a renormalization-group—improved action, the form of which has been
proposed previously by a block-spin renormalization-group analysis. This is quite different from

the situation with the standard one-plaquette action.

PACS numbers: 11.15.Ha, 05.50.+q

A few years ago a first-order phase transition was
observed by Monte Carlo (MC) simulations for SU(5)
lattice gauge theory in four dimensions with the stan-
dard one-plaquette action,!? as well as for SU4) 34
and SU(6) 3 lattice gauge theories. It is believed to be
an artifact of the one-plaquette form of the action.® If
one takes a lattice action which is close to the renor-
malized trajectory (RT) of a renormalization group
(RG), there will be no first-order phase transitions,
because the actions on a RT describe the essentially
same system only with different scales.””® (The dis-
cussion on the arbitrariness of choice of RG will be
given later.) We have proposed such a lattice action,
which will be referred to as RG-improved action, from
a perturbative block-spin RG analysis® and from a
study of the stability of instantons on the lattice.!® In
this Letter we will report that there are indeed no
first-order phase transitions for SU(5) lattice gauge
theory with this RG-improved action. This result veri-
fies the conjecture that the observed phase transition is
an artifact of the standard one-plaquette action, and it
supports also the strategy described in Ref. 9 to obtain
a RG-improved action.

We take a four-dimensional hypercubic lattice with
periodic boundary conditions. The lattice size is 4%
We associate with the link a unitary unimodular 5x5
matrix. The action is

S =g~ 2[co 3, Tr(simple plaquette loop)
+ clzTr(rectangular loop) 1, 1)
with
ci=—0.331, co=1-—8c;. 2)

In a sum over loops, each oriented loop appears once.
We use the algorithm by Cabibbo and Marinari!! to
generate gauge-field configurations. In each step of
the iteration the new link variable U, w 1S obtained by
multiplying the previous value U, , by ten matrices as
follows:

u,,=au,, (=i j=<s), 3)

i>j

where a;; is an element of the SU(2) subgroup such

that the / th and the j th rows and columns of the 5x 5
matrix compose an SU(2) matrix. One iteration by
this method will correspond to at least several itera-
tions by the Metropolis method such as employed in
Refs. 1 and 2, if we guess from the known result for
SU(3) gauge theory concerning the difference between
Metropolis method and Cabbibo-Marinari method.
This conjecture will be verified later.

We begin with a rapid thermal cycle with a given ac-
tion, measuring the value of the one-plaquette Wilson
loop,

W(1x1)=+(TrUy), 4)

in order to guess a possible position where a first-order
phase transition occurs, if it exists at all. Here Uy is
an ordered product of the link variable around a pla-
quette. Then we perform 100 iterations, starting both
from a completely ordered (cold) state and from a
completely disordered (hot) state at several fixed 8’s
(B=10/g?), with steps AB=0.1 around the possible
phase-transition point.

We first make the process described above for the
standard one-plaquette action, because our updating
procedure is different from that in Refs. 1 and 2, in or-
der to check whether our procedure works well for
probing the first-order phase transition. We perform
100 iterations described above for 16.1=8=16.8
with steps AB=0.1. We clearly see the existence of
two states for 16.4<B8=16.7. The mean values of
the one-plaquette Wilson loop for the last fifty itera-
tions are shown in Fig. 1. We see a clear signal for the
first-order phase transition which was observed in
Refs. 1 and 2. We make a further 300 iterations in to-
tal at 8=16.6; the values of the one-plaquette Wilson
loop versus the number of iterations are shown in Fig.
2. From Figs. 1 and 2 we conclude that B8,=16.55
+0.15, which is consistent with the value quoted in
Ref. 1.

If we compare our Fig. 2 with Fig. 1 of Ref. 1, we
see the difference for the rate of convergence to
equilibrium. This verifies the conjecture that one
iteration by Cabbibo-Marinari method corresponds to
at least several iterations by the Metropolis method
employed in Ref. 1.
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FIG. 1. The average value of the one-plaquette Wilson
loop for the standard action as a function of 8. The filled
circles and open diamonds represent the average over the
last 50 of 100 iterations through the lattice with cold and hot

starts, respectively. The curves represent the leading-order
strong- and weak-coupling expansions.

Next we do the same thing as above for the RG im-
proved action in the range 5.5= 8= 6.4, with steps
AB=0.1. After thirty iterations there are no notice-
able differences between the values of the one-
plaquette Wilson loop from a hot start and from a cold
start, for all B’s investigated. We represent the aver-
age of the one-plaquette Wilson loop for the last fifty
iterations in Fig. 3. Although we plot values for both
hot start and cold start, we are unable to see a differ-
ence between them with a precision of the size of the
marks except for 8=6.0. In the figure we also plot the
averages of the one-plaquette Wilson loops at some
values of B for 8> 6.5 and B < 5.5, together with the
leading-order strong-coupling expansion and the
leading-order weak-coupling expansion. The data for
B>6.5(B<5.5) are in good agreement with the
weak- (strong-) coupling expansion:

W(1x1)=1-2.523/8,
W(1x1)=0.07308.
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FIG. 2. The evolution of the one-plaquette Wilson loop
of the ordered (circles) and the disordered (diamonds)
states for the standard action at 8 =16.6.
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FIG. 3. The same as Fig. 1, except for the RG-improved
action.

The rate of convergence from hot start and cold start
to the common value seems to be slowest around
B=6.0. Therefore we make in total 300 iterations at
B=06.0. The results are shown in Fig. 4. As seen from
the figure, we have no sign of a first-order phase tran-
sition. Even if we use the value of the action instead
of the value of the one-plaquette Wilson loop as a
probe, the results are essentially the same as previous
ones. Thus we conclude that there are no first-order
phase transitions for the RG-improved action, as con-
jectured already in Ref. 9.

Strictly speaking, we cannot draw in general a defi-
nite conclusion on the phase transition of an infinite
system from a numerical study on a finite lattice.
Probably, we have to state moderately that even if a
first-order phase transition exists for the RG-improved
action, the gap of the value of the one-plaquette Wil-
son loop is very small and is less than 0.01. Anyway,
calculations of physical quantities by MC simulations
are performed on a finite lattice, and therefore we con-
clude that for MC calculations on a finite lattice we
may assume the nonexistence of first-order phase
transitions for SU(5) lattice gauge theory, if we use
the RG-improved action.

We also make a similar investigation for the action
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FIG. 4. The same as Fig. 2, except for the RG-improved
action at 83=26.0.
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TABLE 1. The averages of the one-plaquette Wilson loop
with the statistical errors for the last 220 of 300 iterations
from both cold and hot initial states in the case of the three
actions at some fixed B’s. See text for more details.

Action Beta  Initialization (W (1x1)) Error
Standard 16.6 Cold 0.5275 0.0012
Hot 0.4479 0.0015
Improved 6.0 Cold 0.5333 0.0017
Hot 0.5340 0.0009
Symanzik 11.3 Cold 0.4918 0.0018
Hot 0.4868 0.0012

an improved action'? in Symanzik’s scheme.!> Be-
cause the numerical value ¢;= — -5 is between ¢;=0
and ¢;= —0.331, we may expect that the situation will
also be between those observed for the standard action
and for the RG-improved action. In Table I we list the
averages of the one-plaquette Wilson loop with the sta-
tistical errors at 8=11.3 for the last 220 iterations,
disregarding the first eighty iterations starting both
from a hot state and from a cold state. Presented there
are also those for the other two actions. The errors are
estimated by dividing the whole iterations into
bunches of ten iterations, measuring the standard de-
viation of the bunch averages from the total average,
and dividing it by the square root of the number of
bunches. From Table I we see that the difference
between the one-plaquette averages from hot start and
from cold start is much larger than the statistical errors
for the standard action at 8=16.6, and the difference
is less than the errors for the RG-improved action at
B=06.0. On the other hand, for Symanzik’s improved
action the difference is slightly larger than the statisti-
cal errors at 8=11.3. Thus, although we cannot say
that there is a first-order phase transition, neither do
we say definitely that there are no phase transitions.

Let us finally make a few comments:

(i) The definition of the RG is not unique, of
course, and therefore the RT is not unique. There are
a variety of transformations which can be adopted as a
RG. To find AB for a scale change, many of them will
work well as described by Bowler ef al.'* However, if
one wants to decrease lattice artifacts at small distances
for the actions on the RT as small as possible, there
will be certain criteria to choose the RG, although
such criteria are not known yet. At least the actions
on the RT should be effective actions for long-distance
behavior of any lattice action such as the standard
one-plaquette action. In Ref. 9, we have made an ef-
fort to find such a lattice action and have chosen the
action represented by Eq. (1). Although the absence
of first-order phase transitions only weakly supports
the validity of our strategy, we have also found that
the lattice spacing determined from the string tension

is in remarkable agreement with that determined from
meson spectrum!® with a RG-improved SU(3) action.
This action is the same as the action (1), only with the
modification of the gauge group from SU(5) to SU(3).
(See Ref. 15 for more details.) We believe that these
two facts together support rather strongly the validity
of our strategy.

(ii) The RG-improved action is obtained by a per-
turbative block-spin RG analysis. Therefore it is
guaranteed that the action is close to the RT only near
the critical point. However, a possible point for a
first-order phase transition is the crossover region
from strong-coupling region to weak-coupling region
and around the point where the mean value of the
one-plaquette Wilson loop is 0.5. For the RG-
improved action this point is around 8= 6.0. Because
the numerical value 8= 6.0 is rather large, we may ex-
pect that the action at 8=6.0 is close to the RT. Our
numerical results are consistent with this conjecture.

The numerical calculations have been performed
with HITAC M280H at the National Laboratory for
High Energy Physics (KEK). We would like to thank
Hirotaka Sugawara and other members of KEK for
their kind hospitality. Finally, two of us (S. I. and
T. Y.) would like to thank the Iwanami Fuju-kai for
financial support.
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