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Time Evolution and Eigenstates of a Quantum Iterative System
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We construct the evolution operator U of the quantum Chirikov map explicitly. When
27rtt=lM/N is a rational number, corresponding to the quantum resonance condition of Casati et
a1., we can reduce the operator U as a direct sum of independent % & W unitary matrices. We then
obtain numerically the eigenstates of the same system. We describe these eigenstates in the
coherent-state representation and find that they follow closely the Kolmogorov-Arnol'd-Moser
curves and other classical orbits. We discuss the long-time behavior of initially localized quantum
states.

PACS numbers: 03.65.—w, 02.90.+p, 03.20.+i, 05.45.+b

We study the behavior of quantum eigenstates in a
simple quantum system at small but finite t, and
present evidence that the quantum eigenstates follow
closely the classical trajectories and, in particular, the
Kolmogorov-Arnol'd-Moser (KAM) curves. These
eigenstates remain constant in time, and do not diffuse
in either the position or the momentum space. We
can express any physical state as a linear combination
of these eigenstates.

The model that we have studied is the quantum
Chirikov map. ' This system may be described by a
periodically kicked quantum rotor with the Hamiltoni-
an

0= —,'p + [k/(2n. ) ]cos(2m. q ) g„b(t —n).

The variable q is an angle expressed as a fraction of
2m, p is a properly scaled angular momentum, and the
kicking period is chosen to be 1. Note that the
momentum p between the kicks is constant. We
denote the coordinate at the kick, t = n, as q„, and the
momenta just before and after the kick as p„and p„+~,
then we obtain

(4) and the evolution operator U are independent of n.
We study the eigenstate of the evolution operator,

where co is known as the pseudoenergy. These eigen-
states are stationary under the time iteration.

We find that it is more convenient to solve (7) in
momentum space. Since q is an angle, the eigenstate
(m ~

of p has a discrete eigenvalue m with p =2vrtm.
In momentum space, we can express (7) as

where @ is the momentum-space wave function, and

U, = (m )U(m')

= exp( —i 2m. m lr) ( —1)m™J, (z), (9)

with

z = k/(2~)'t.

p„+ t
——p„+ (k/2') sin(2vrq„),

q„„=q„+p„„(mod 1 ),

which are the Chirikov equations.
The quantization rule at t = n is

[p„,q„]= [p„+,,q„]= —ilt,

(2)

(4)

It is difficult to eva1uate the eigenvalues and the
eigenvectors of an ~ x ~ with Bessel functions as its
matrix elements. In the present case, we can use an
additional symmetry to simplify our problem into an
eigenvalue problem of finite matrices.

In the classical Chirikov map, the system is invariant
under p p+1. This corresponds to a transforma-
tion in the momentum eigenvalue m by

which is not affected by the kick. However,
[p..p. + t]«.

In the following, we solve our system directly from
Eqs. (2)—(4). We introduce a unitary evolution opera-
tor U obeying

p„+i= U p„U,
—1 qn+] = q'n (5)

U = exp — p„exp — cos(27rq„) . (6)i 2 ik
(2m

One can easily show that both the quantization relation

U, =U
m +N, m'+N mm' (12)

The eigenfunction @ of U is of the Bloch wave form

m m + (2mit)

In the following, we shall choose I/2vrh as an even in-
teger N. s (With slight modifications, we can general-
ize our condition to I/2m. h =%/M, a rational number.
The condition that 2' is a rational number is the
same as the resonance condition discussed in Refs.
2—5.) Then we find that
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(m =s+Nl),

P, +~1 ——e '"$, (a), 1«s «N
It is straightforward to show that the X & X matrix

V, (a) = X,U, ,e

is unitary, and that @„I «s «N, given in (13) is the eigenfunction of V(a) with the same eigenvalue e
In the present case, we can do the summation over the Bessel functions exactly, giving

I

V, (a) = —exp[ —im s /N+ i (s' —s) a/N] X exp —iz cos-1 — 2 i2vr(s' —s)j . 27rj + a
ss j=1

(13)

(14)

which involves only elementary functions. In fact, we can always make such a simplification if the system is

periodic in both p and q.
We can decompose an arbitrary wave function P as a linear combination of P, (a) (1 «s «N) associated with

the parameter a via
f 2W

P, +&i= J~ (da/27r)e "'p, (a), (16)

where

e.(a) = ~(e, + we'"

Under the operation of U, we have
f+ 27T

(U" y), +~I =
~ (da/27r)e ' '[V(a)"y(a)], . (IS)

In other words, under an iteration, the component P, (a) tranforms according to the N & N matrix V(a). Thus we

can obtain the iterative property of Q, —~ & m & ~, from the iterative property of P, (a), 1 «s «N.
To compare the quantum states with the classical states, we describe the quantum eigenstates in the coherent-

state representation. ' A coherent-state basis is a Gaussian wave packet in both p and q spaces, centered around its

expectation value (p', q'). This wave packet has a minimum combined width 4p=4q =Q(h/2) = I/ J(4mN).
The wave function in such a coherent-state representation is

Q(p', q') = g (27r2N)'i exp[ —(q'z+ip'q')7rN]exp{ —mN[(m/N) —iq' —p'] ]P~,

where p is the wave function in p space. In Fig. 1,
we plot the Chirikov map of the classical system gen-
erated by a given set of initial points. In Fig. 2, we

plot the coherent-state-representation particle density
~/~2 of several eigenstates as functions of the parame-
ter q' and p'. As we can see, in the coherent-state
representation, the eigenstates follow quite closely the
classical orbits. Our result agrees with the conclusion
of Berry et al. " that the classical limits of the (coarse-
ly grained) eigenstate Wigner functions'2 lie on the in-

variant manifolds. The ) p ~
in the coherent-state

representation is in fact a coarse-grained Wigner func-
tion. The process of coarse graining is necessary here.
For a small control parameter k, most eigenstates fol-
low well-defined KAM curves. '3 For large N (small h )
and finite k, the shapes of the quantum eigenstates are
still described qualitatively by the classical orbits.
Classically, a KAM trajectory is a curve with no width.
This trajectory is replaced in the quantum case by a
wall of width I/Q(47rN). The chaotic regions are
represented in the quantum map by ripples and no
longer have well-defined wa11 structure. For a finite t,
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FIG. 1. Classical Chirikov map at k = 1.0 generated by a
selected set of initial points.
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Next we ignore the l dependence and look at the dif-
fusion in s (1 ~ s ~ N) and q only in the coherent-
state representation. This corresponds to identifying
all the cells, and looking at its iterative behavior within
this identified cell. We find that the quantum tunnel-
ing is controlled by KAM curves. A localized state in
the middle of a closed KAM curve remains localized
after an arbitrary number of iterations. The details of
our calculations will be presented elsewhere.
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