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Viscous Fingering Fractals in Porous Media
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Gas displacing a high-viscosity fluid in a two-dimensional porous disk intrudes in the form of
ramified fingers similar to the structures obtained in diffusion-limited aggregation. We find that
the resulting finger structures are described by a fractal dimension D = 1.62+0.04 consistent with
D for diffusion-limited aggregation clusters. This result confirms the analogy between diffusion-
limited aggregation and two-fluid displacement in porous media introduced by Paterson.

PACS numbers: 47,55.Mh, 05.40.+j, 47.55.Kf

Viscous fingering in porous media has been exten-
sively studied in the past and has recently become a
field of very active research. The phenomenon is also
of practical importance in the recovery of oil.

When a fluid displaces another fluid with a higher
viscosity the interface is unstable and the driving fluid
intrudes into the viscous fluid in the form of
"fingers. " Saffman and Taylort developed the theory
of viscous fingering for situations where the fluids are
immiscible and where the flow is described by Darcy's
law valid in porous media for each of the fluids
separately. This theory also describes the flow of ordi-
nary fluids in the two-dimensional (2D) geometry
given in Hele-Shaw2 cells consisting of two parallel
glass plates separated by a very small gap a. Saffman
and Taylor verified their theory by experiments on
rectangular Hele-Shaw cells and found that a single
viscous finger developed with a width that decreased
to half the channel width as the capillary number
N„= Up/o. increases above 0.04. Here U is the
fingertip velocity, p, is the viscosity of the high-
viscosity fluid, and o- is the interfacial tension.

Paterson3 studied 2D radial fingering in circular
Hele-Shaw cells and concluded that when the cir-
cumference of the bubble injected at the center in-
creased beyond a critical value P,/a = N, , 'i, it be-
came unstable and developed fingers with a width of
the order of X, . As the bubble grew further the
fingers bifurcated when their width increased beyond
2X, .

We study radial displacement of immiscible fluids in
a 2D random porous medium, and observe a fingering
structure dramatically different from Hele-Shaw cell
fingers at comparable N„; see Fig. l. Instead of the
smooth broad fingers observed in the Hele-Shaw cells,
we find that the fingering process produces ramified
fractal4 structures with a fractal dimension D
= 1.62 + 0.04, consistent with the diffusion-limited ag-
gregation (DLA) model discussed below.

Our results at high N„extend the recent experi-
ments by Lenormand and Zarcone~ from the invasion
percolation to the DLA regime. They studied linear
displacement in a 20 porous medium consisting of

etched channels on a square lattice at extremely low
capillary numbers N„( 10 . The injected fluid
forms a ramified structure with a fractal dimension D
in the range 1.80 to 1.83 in agreement with the in-
vasion percolation model with trapping.

Recently Nittmann, Daccord, and Stanley' studied
2D viscous fingering of miscible fluids in a Hele-Shaw
channel. By choosing a high-molecular-mass polysac-
caride aqueous solution as the viscous fluid and water
as the driving fluid, they eliminate the interfacial ten-
sion and obtain high effective N„. However, the solu-
tion is non-Newtonian and exhibits shear thinning. N„
is therefore not well defined. The observed fingering
structure is fractal with D = 1.39, and below the DLA

FIG. 1. Fingers of air displacing liquid epoxy in a 2D
porous medium consisting of 1.6-mm-diam glass spheres in

a monolayer 40 cm in diameter at %„=0.04. The center of
injection is at the circle near the center of the structure. (a)
t = 2 s after the start of injection; (b) t = 3.9 s; (c) t = 17.2 s;
(d) t =19.1 s.

2688 1985 The American Physical Society



VOLUME 55, NUMBER 24 PHYSICAL REVIEW LETTERS 9 DECEMBER 1985

results '0 1.68. In their linear displacement the lateral
channel width W controls the fingering, and D 1

when the finger length is » 8'.
There have been several studies of 3D viscous

fingering in porous media in packs of sand, " in trans-
parent models made of glass powder, '2'3 and in con-
solidated transparent models. '4'5 These studies show
that 3D viscous fingering also generates ramified
structures. However, they have so far not been
analyzed in terms of their fractal structure. Also note
that gravity effects cannot be ignored in 3D systems.

Paterson' pointed out the analogy between two-
fluid flow in porous media and the DLA process. '7

Darcy's law states that in a porous medium the fluid
flux U is proportional to the gradient of the pressure p:

The permeability, k, is characteristic of the porous ma-
terial. For the Hele-Shaw cell with plate separation a,
Eq. (1) applies with k =a2/12. For incompressible
fluids V U = 0, and Eq. (1) leads to the Laplace equa-
tion for the pressure,

V2p =0, (2)

Consider a disk of radius Ao, and assume that the
viscosity of the fluid injected at the center is negligible
compared with the viscosity p, of the fluid being dis-
placed. Then the pressure everywhere in the growing
bubble is p;, whereas the pressure at the rim of a circu-
lar system is po. The pressure in the fluid being driven
is given by Eq. (2), and equals p, at the interface if the
interfacial tension may be ignored, i.e., for large
N„= U p/a. . The interface moves with a velocity
given by Eq. (1).

This fluid displacement is analogous' to
DLA, ' ' where "particles" that walk at random
stick irreversibly on contact with the growing cluster.
The number of particles or mass N (r) within a radius r
from the seed particle has the form N (r) —r, where
the fractal dimension is ' D =1.68+0.05 for 2D sys-
tems. In a continuum description with a steady flux of
walkers from a rim far away from the seed, the proba-
bility p (r, t) that a walker is at a point r at time t satis-
fiess '7 Eq. (2), with the condition p = 0 at the boun-
dary of the aggregate and p = 1 at the rim. The cluster
boundary moves with a velocity proportional to Vp,
and Eq. (1) is satisfied for DLA as well.

In order to test these ideas we made 2D porous sys-
tems by coating a 40 em-diam disk of 6-mm-thick
Plexiglas with a 0.1-mm layer of epoxy, and spread a
layer of glass spheres with diameter 1.0 or 1.6 mm
onto the disk. After the epoxy has hardened the ex-
cess glass spheres are removed leaving a monolayer of
spheres. This disk is glued onto another Plexiglas disk
with Ciba-Geigy epoxy XW 396 with hardener UP XW
397. The resulting system has a porosity of about

0.45. The cell is filled by injecting glycerol or epoxy
through a hole at the center. We used epoxy so that
the resulting fractal is preserved when the epoxy hard-
ens (gel time 6—10 h, hard after 24 h). The experi-
ments are performed by injection of air at a fixed pres-
sure of typically 20 mbar above the pressure at the
rim. The resulting finger structure is photographed at
a maximum rate of a picture every 1.9 s, and the ex-
periment takes about 25 s. The viscosity of the epoxy
is constant during the experiment. In the photographs
the individual spheres and the meniscus separating the
two fluids is clearly visible. We trace the invading
fingers on a transparency placed over the picture, us-
ing India ink. These tracings are digitized with use of
an RCA TC2055CX camera and a Tecmar Video van
Gogh interface in an IBM PC.

Figure 1 shows a sequence of pictures of the dis-
placement of freshly mixed epoxy by air at N„= 0.04.
Experiments with glycerol, N„= 0.15, generated
fingering structures that cannot be distinguished from
those in Fig. 1. These fingering structures are very
similar to pictures of 2D DLA aggregates found in the
literature. ' They are treelike in structure, showing
no loops. The fingers are narrow and only occasionally
surround several spheres. By closer inspection one
finds that only the outer fingers grow, the others are
screened, as is the ease for the growth of DLA clus-
ters.

We analyze the viscous fingering structures by digi-
tizing pictures as shown in Fig. 1 with a resolution of
256 x 256 pixels, and obtain a cluster of black pixels
representing the fingering structure. We calculate the
number N (r) of black pixels as a function'of the dis-
tance, r, from the center of injection. For fractal
structures we expect N (r) to have the form

N(r) =No(r/R~) f(r/Rg).
Here Rg is a characteristic size of the fractal —we use
the radius of gyration —and No is the number of black
pixels. The crossover function f(x) is constant in the
range a/Rg ( x & 1, and tends to x D for x & 1, and
we find N(r) No for r » Rg as we should.

In Fig. 2 we plot log[N(r)/Np] as a function of
log(r/Rg) for the structures shown in Fig. 1. We have
also included the analysis of a fingering structure ob-
tained in glycerol at N„= 0.15. We find a very satisfy-
ing data collapse: The fingering structures at various
times for a given experiment, and from experiments
with different fluids, all fall on a single curve when
plotted as in Fig. 2. Equation (2) holds only as an
average over many clusters, and the fluctuations in
N (r) for each realization of the random finger struc-
ture are expected. From fits to these results in the
range 2a & r ( Rg, we find for the larger clusters (c to
e in Fig. 2) a fractal dimension of viscous fingers in 2D
porous media of D = 1.62 + 0.04, somewhat below but
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FIG. 2. The normalized finger structure volume N(r)/No
as function of the reduced radius r/Rg for the structures
shown in Fig. 1. Curve a, Rg = 1.7 cm; curve b,
Rg=2. 9 cm; curve c, Rg=5.2 cm; curve d, Rg=6.6 cm.
Curve e, air displacing glycerol at W„=0.15, in a 40-cm disk
of 1-mm spheres. Rg = 6.7 cm.

FIG. 3. Scaling plot of the results in Fig. 2. The crossover
function f(r/R~) =N(r)/No(r/Rg) as function of r/Rg
with a =1.62, for the structures shown in Fig. 1, and with
parameters for epoxy (curves a —d) and glycerol (curve e)
given in Figs. 1 and 2.

consistent with the fractal dimension of the DLA clus-
ters, and as expected well below the invasion percola-
tion value 1.80 (D ( 1.83 found experimentally. 5

The deviation from this power-law behavior of the
finger structure is obtained by the plotting of the
crossover function f (r/Rg), from Eq. (3), with
D = 1.62, as shown in Fig. 3. Over more than a decade
in r/Rg the fractal power-law behavior is observed be-
fore the finite size of the cluster makes f'(x) vanish.
We have tested our analysis by digitizing the DLA
cluster in Fig. 1 of Ref. 10. We find DnLA ——1.65, and
similar fluctuations for f(x) as shown in Fig. 3. The
use of different origins near the center of injection for
the evaluation of X(r) gives results consistent with
Fig. 2. However, since DLA clusters scale differently
in the radial and tangential directions, we do not aver-
age over the whole fractal. A rough estimate of the
fractal dimension can also be determined by counting
the number n (0 —l D of squares of side l needed to
cover the fractal. This method gives D in the range
1.55 to 1.8, and does not allow for the crossover to fi-
nite cluster size at Rg, nor does the method allow for
the radial/tangential anisotropy. In addition we find
that the measurement of X(r) gives a more robust es-
timate of D, in the sense that the estimates of D
scatter less when the origin location, discriminator lev-
el, etc. , is changed. We conclude that D is best deter-
mined from N(r).

The dynamics of the fingering process is shown in
Fig. 4. The distance r from the center of injection to
the tip of the longest finger is plotted as function of
t/to, where to is the breakthrough time when r =Ro.
Two experiments on the same cell with glycerol, and
one with epoxy, are shown. The points corresponding

to the structures in Fig. 1 are marked. For a circular
bubble of radius r at a fixed pressure p, expanding into
the viscous fluid, Eqs. (1) and (2) give the relation

t/to —(r/Ro) [I—ln(r/Ro) ]. (4)

This gives the fully drawn curve in Fig. 4, and it
describes the data well. This indicates that the longest
fingers control the potential flow and generate a
"Faraday cage" with a radius almost equal to r
screening the internal structure of shorter fingers.
Matsushita et al. ' studied the fractal structure of 2D
zinc metal leaves grown by electrodeposition and ob-
tained D =1.66+0.03. They proposed that the ex-
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FIG. 4. The length r of the longest finger as function of
time. Crosses and stars, two experiments on a 20 system of
1-mm glass spheres. Circles, results of experiment shown in
Fig. 1, with points labeled correspondingly. "Ca" denotes
X„. The curves are discussed in the text.
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ponent 2 in Eq. (4) be replaced by D in order to ac-
count for the fact that less of the fluid is displaced by
fractals than by bubbles. This replacement gives the
dashed curve in Fig. 4. Our results do not allow a clear
distinction between these two types of behavior. With
new equipment that allows pictures at a higher rate we
will investigate the time dependence in detail.

We conclude that viscous fingers form fractal struc-
tures with a fractal dimension D = 1.62 + 0.04, at high
N„ in a 2D porous medium. The finger structures are
similar to 2D DLA clusters. They have the same frac-
tal dimension and have a treelike structure with very
few loops.

In the high-N„regime we have studied, the fluid in-
terface advances on the pore level by at each instant
selecting the most favorable pore. But in contrast to
the invasion percolation limit N„« 1, the probabili-
ty of entering a pore is not only determined by the
width of the pore neck but also by the pressure gra-
dient across it. The pressure gradient is, however,
determined globally by the solution of the Laplace
equation, and this fact is the source of the screening
by the longest fingers Th.e dynamnics of the finger
growth is therefore controlled by the pressure distribu-
tion determined by the Laplace equation and by the
discrete random advance on the pore level —it is this
last step that is missed by continuum theories of two-
phase fluid flow in porous media, and which is neces-
sary for the analogy proposed by Paterson to hold.
This interplay between the global field distribution and
the discrete random propagation of the front leads to
fractal finger structures also in dielectric breakdown. '

The use of Hele-Shaw cells to model viscous finger-
ing in porous media must be reconsidered for immisci
hie fluids —since the fingering we observe is fractal in
contrast with the observed'3 finger structure in Hele-
Shaw cells at comparable N„. It is an open question
whether the radial Hele-Shaw fingers lead to a fractal
structure or essentially fill the plane by repeated split-
ting in an infinite system. We believe that the experi-
ments by Nittmann, Daccord, and Stanley in a Hele-
Shaw channel may in fact model very high-N„ flow in
porous media and that the required randomness of the
front dynamics is due to viscosity fluctuations in their
viscous solution.

In summary, we have shown that viscous fingering
at high N„ is similar to DLA clusters being treelike in
structure, having no loops and D =1.62. This is sub-
stantially different from the invasion percolation limit
N„« 1, observed by Lenormand and Zarcone,
where the invaded pores form a fractal with loops of all
sizes and with D = 1.82.
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Note added. —After the submission of our paper,
Lenormand 0 has estimated the various limits for in-
vasion percolation, piston flow, and DLA fingering.
He finds that if N„) N,', = (a/L) p,„,/hatt„ then DLA
fingering is expected. Using a =0.1 cm, L =20 cm,
we find N,", = 10 6, and conclude that we have
N„&& N, ,
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