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Measurements of Interaction Cross Sections and Nuclear Radii in the Light p-Shell Region
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Interaction cross sections (o.t) for all known Li isotopes (6Li-"Li) and 7Be, 9Be, and 'aBe on
targets Be, C, and Al have been measured at 790 MeV/nucleon. Root mean square radii of these
isotopes as well as He isotopes have been deduced from the o-I by a Glauber-type calculation. Ap-
preciable differences of radii among isobars (6He- Li, SHe- Li, and Li-98e) have been observed
for the first time. The nucleus "Li showed a remarkably large radius suggesting a large deforma-
tion or a long tail in the matter distribution.

PACS numbers: 25.70.—z, 21.10.ov, 27.20.+n

Recently, exotic-isotope beams, produced through
the projectile-fragmentation process in high-energy
heavy-ion reactions, were used to measure the interac-
tion cross sections (o-t) for all the known He iso-
topes. ' This novel technique of using exotic nuclear
beams makes it possible to study systematically proper-
ties of unstable nuclei. In the present paper, we report
the trt for all the known Li isotopes (sLi, 7Li, sLi, 9Li,
and ttLi) and Be, Be, and ' Be on the target nuclei
Be, C, and Al at 790 MeV/nucleon. A firm basis has
been empirically established by use of a Glauber-type
calculation to extract root mean square (rms) nuclear
radii from the o-t.

The Li isotopes, except "Li, and the Be isotopes
were produced as secondary beams through projectile
fragmentation of the 800-MeV/nucleon "B accelerat-
ed by the Bevalac at the Lawrence Berkeley Laborato-
ry. The beam of 11Li was produced from a zoNe pri-
mary beam. The isotopes produced in a production
target of Be were separated by rigidity with the beam-
line magnet system as described in previous papers. '
The rigidity-separated isotopes were further identified
before incidence on a reaction target by velocity
[time-of-flight (TOP)] and by charge (pulse height in
scintillation counters). No contamination more than
10 was observed in any selected isotope beam.

The interaction cross section (o-t) was measured by
a transmission experiment using the large-acceptance
spectrometer as in the measurement of the He iso-
topes. ' Here o-I is defined as the total reaction cross
section for the change of proton and/or neutron
number in the incident nucleus. The obtained o-I are
listed in Table I. The largest systematic error on a-I,
up to about 0.3%, came from uncertainties in the es-
timation of the scattering-out probability of the nonin-

TABLE I. Interaction cross sections (o.t) in millibarns.

Beam
Target

C Al

'Li
Li

'Li
'Li
l 1 Li

Be
'Be
10Be

651+ 6
686+ 4
727+ 6
739+ 5

682+ 6
755+ 6
755+7

688+ 10
736+ 6
768+ 9
796+ 6

1040 + 60

738+ 9
806+ 9
813 + 10

1010 + 11
1071 + 7
1147 + 14
1135 + 7

1050 + 17
1174 + 11
1153 + 16

teracting nuclei. All other systematic errors were es-
timated to be less than 0.2'/0 of a-t.

The interaction nuclear radius Rt is defined as

trt(p, t) = ~lRt(p) +Rt(t) ]',

where Rt(p) is the projectile radius and Rt(t) is the
target radius. The separability of projectile and target
radii assumed in the equation was examined by use of
o-I of various projectile-target combinations. Figure 1

shows AI of Li and Be isotopes obtained from dif-
ferent targets. Here the absolute scale of the radius
was determined from a least-squares fitting of o-I of
4He+ He, Be+ Be ' C+'2C, 4He+'2C, and
Be+' C reactions. ' lt is seen that a projectile ra-

dius is in fact independent of target variation. As a
result the assumption of the separability of projectile
and target radii was demonstrated to be valid within
+ 0.02 fm. This separability indicates that Rt is exper-

imentally a well-defined size parameter of a nucleus.
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FIG. 1. R~ for Li and Be isotopes. The values obtained by
three different targets agree with each other showing the
separability of projectile and target R~.

Average values of RI deduced from the Be, C, and Al
targets are, therefore, used for further discussion.

In Table II the obtained Ai (column I) are listed to-
gether with the rms radii R, , of the charge distribu-
tion determined by electron-scattering experiments'
(column 2). The dependence of Rl on the mass
number (3) and that of 8;, show a noticeable differ-
ence, i.e., RI increases with 3, ~hereas R;, stays al-
most constant for A ~ 6. We will now show that the
difference is due to the definitions of the two radii but
not due to a difference between the charge and the

matter distributions.
%e relate err to the rms radius by a Glauber-type

calculation using Karol's prescription and show that
the rms radius of nuclear-matter distribution can be
determined independently of assumed model density
functions. To examine the functional dependence, we
employed three types of nuclear density distributions:
a Gaussian, a shell-model harmonic oscillator, and a
droplet model with a Yukawa folding function
[ ( I/r) e '1 ]. The Gaussian and the harmonic-
oscillator distributions each have only one size param-
eter, ao and aHO, respectively. On the other hand, the
droplet-model distribution has two parameters: a size
parameter ro and a diffuseness parameter b. First, we
discuss the rms radii using the Gaussian and the
harmonic-oscillator distributions.

In a Glauber-type calculation nucleon-nucleon (NN)
cross sections have to be given. The free NN cross
sections are inappropriate, ho~ever, because the effec-
tive values may differ from the free-nucleon values
because of nuclear-matter effects. In fact, it has been
reported that the mean free path of the 800-MeV pro-
tons inside the nuclear matter is longer than expected
from the free NN cross sections and also that the ef-
fective values of NN cross sections are smaller in
uranium reactions at 900 MeV/nucleon. '0 To deter-
mine the effective values of NN cross sections for the
present analysis, the calculations were first made for
collisions of identical stable isotopes, 't i.e. , 4He+ ~He,
6Li+6Li, Li+ Li, Be+ Be, and ' C+' C The size
parameter ao (or a Ho) and a scaling factor of NN
cross sections were taken as parameters in order to fit
the R;, and a-I simultaneously.

It was found that effective values of the NN cross

TABLE II. Interaction nuclear radii and rrns radii, in ferrnis.

e scat.
R;,

Gaussian
CyR rms Rm a

Harmonic oscillator
R rms R r"ms

4He

He
'He

Li
'Li
'Li
'Li
11L1

1.41 + 0.03
2.18 + 0.02
2.48 + 0.03

2.09 + 0.02
2.23 + 0.02
2.36 + 0.02
2.41+ 0.02
3.14 + 0.16

1.67 + 0.01

2.56+ 0.10
2.41 + 0.10

1.72 + 0.06
2.75 + 0.04
2.70 + 0.03

2.54 + 0.03
2.50 + 0.03
2.51 + 0.03
2.43 + 0.02
3.27 + 0.24

1.72 + 0.06
2.73 + 0.04
2.69 + 0.03

2.54 + 0.03
2.50 + 0.03
2.51 + 0.03
2.43 + 0.02
3.27 + 0.24

1.72 + 0.06
2.46 + 0.04
2.33 + 0.03

2.54 + 0.03
2.43 + 0.03
2.41+ 0.03
2.30+ 0.02
3.03 + 0.24

1.72 + 0.06
2.87 + 0.04
2.81 + 0.03

2.54 + 0.03
2.54 + 0.03
2.57 + 0.03
2.50+ 0.02
3.36 + 0.24

78e 2.22 + 0.02
Be 2.45 + 0.01

' Be 2.46+ 0.03
2.52 + 0.01

2.48 + 0.03
2.49 + 0.01
2.38 + 0.02

2.48 + 0.03
2.50 + 0.01
2.39 + 0.02

2.52 + 0.03
2.47 + 0.01
2.34+ 0.02

2.41+ 0.03
2.53 + 0.01
2.43 + 0.02

' C 2.61 + 0.02 2.45 + 0.01 2.40 + 0.02 2.43 + 0.02 2.43 + 0.02 2.43 + 0.02

'Superscripts m, c, and n indicate the nuclear matter, the charge, and the neutron matter distribu-
tions, respectively.
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sections, 80/o of the free-nucleon values, gave a good
fit in the present mass range. In Fig. 2, the rms radii
R 6, obtained after fitting the err by use of the Gauss-
ian distribution with effective XX cross sections are
shown by the dashed line. The solid line in the figure
indicates the charge rms radii R, , obtained in the
same way by use of the harmonic-oscillator distribu-
tion. It is seen that the R,', are well reproduced with
the fixed scaling factor for NN cross sections. Even
the difference between the R;, of 6Li and 7Li is
reproduced by the harmonic-oscillator distribution be-
cause of the occupation-number difference between
protons and neutrons.

This calculation also showed that RI represents the
radius where the matter density is about 0.05 fm 3 for
A ~ 6 nuclei. Now it can be understood why RI and
the rms radius behave differently with increase of A:
While the rms radius stays constant, the absolute den-
sity increases with A. Therefore RI, which represents
constant density, increases with A.

Having established that the rms radii of stable nuclei
derived from o-I agree with R; „we now extend the
calculations to unstable nuclei using the effective NN
cross sections. Column 4 in Table II shows the de-
duced R 6, and columns 5-7 show rms radii deduced
by use of the harmonic-oscillator distribution (R, „
matter radius; R; „charge radius; and R," „neutron
matter radius). The R,G, and R, , agree well for each
nucleus.

Calculations using the droplet model gave further
evidence that different distributions can give essential-
ly the same values for rms radii. In this model we
have two parameters, a size parameter (ro) and a dif-
fuseness parameter (b). It is found that a set of values
of ro and b which fit a a-I gives essentially same R, ,
values. The R, , were calculated with use of values'

of b from 0.4 to 0.8 fm for He, Li, Be, and ' C and
were found to be equal within 0.04 fm to those ob-
tained from the harmonic oscillator.

From the preceding discussion we conclude that the
nuclear matter radii deduced from o-I are insensitive to
the selection of the model density distribution. Figure
3 shows the R, , determined by use of the harmonic-
oscillator distribution. Appreciable differences of radii
are observed, for the first time, between pairs of iso-
bars with different isospin, 6He- Li, sHe-sLi, and 9Li-
Be. The larger radii of the neutron-rich isotopes He

and 8He, which have only two protons, suggest the ex-
istence of thick neutron skins as seen in differences
between R;, and R,", in Table II. On the other
hand, a pair of mirror nuclei 7Li- Be show the same
matter radius.

It is interesting to note that the nucleus "Li, with
the neutron number of p-shell closure in the naive
shell model, shows a considerably larger radius than
neighboring nuclei. It suggests the existence of a large
deformation and/or of a long tail in the matter distri-
bution due to the weakly bound nucleons. A weakly
bound nucleon may enhance o-I because it could be
kicked out from the nucleus with a small momentum
transfer. A rough estimation based on the energy dis-
tribution of nucleons after a nucleon-nucleon col-
lision, however, showed that the change in separation
energy from 10 MeV to zero affects o.i by only about
3%. This binding effect, therefore, cannot explain the
bulk of the observed deviation.

In summary, we have measured the interaction cross
sections o-I of nucleus-nucleus collisions using secon-
dary beams of unstable and stable Li and Be isotopes.
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FIG. 2. Charge rms radii. Circles indicate the radii 8, ,
determined by electron-scattering experiments. The dashed
line shows the result obtained by fitting the o-I by a
Glauber-type calculation employing a Gaussian density dis-
tribution. The solid line shows the result obtained by use of
a shell-model harmonic-oscillator distribution.
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FIG. 3. Matter rms radius 8, , Lines connecting iso-
topes are only guides for the eye. Differences in radii are
seen for isobars with A = 6, 8, and 9. The "Li isotope has a
much larger radius than other nuclei.

2678



VOLUME 55, NUMBER 24 PHYSICAL REVIEW LETTERS 9 DECEMBER 1985

The interaction radii Rt of these nuclei have been
determined from the a-t. The separability of Rt ob-
served between projectile and target indicated that Ri
represents a well-defined size parameter of a nucleus.
The matter rms radii were deduced by use of three
model density distributions: the Gaussian, the shell-
model harmonic oscillator, and the droplet model. As
a result, the three distributions gave essentially the
same rms radii. These rms radii for stable nuclei have
been found to agree well with those from electron-
scattering experiments. It has been found that "Li has
a radius much larger than other neighboring nuclei
presented here. It suggests the existence of a large de-
formation andi'or a long tail in the matter distribution
in "Li. The differences between the matter rms radii
R,m, for isobars of different isospins, He- Li, He- Li.,
9Li-98e, have been observed for the first time. A pair
of mirror nuclei 7Li- Be have been found to have
equal R, ,
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