
VOLUME 55, NUMBER 24 PHYSICAL REVIEW LETTERS

String-Generated Gravity Models

9 DECEMBER 1985

David G. Boulware
Department ofPhysics, University of Washington, Seattle, Washington 98195

and

S. Deser
Department ofPhysics, Brandeis University, Waltham, Massachusetts 02254

(Received 17 October 1985)

Expansion of supersymmetric string theory suggests that the leading quadratic curvature correc-
tion to the Einstein action is the Gauss-Bonnet invariant. We show that this model has both flat
and anti —de Sitter space as solutions, but that the cosmological branch is unstable, because the
graviton becomes a ghost there: The theory solves its own cosmological problem. The general stat-
ic spherically symmetric solution is exhibited; it is asymptotically Schwarzschild. The sign of the
Gauss-Bonnet coefficient determines whether there is a normal event horizon (for the string-
generated sign) or a naked singularity. We discuss the effects of higher-curvature corrections and
of an explicit cosmological term on stability.

PACS numbers: 12.25.+e, 04.20.Cv, 04.50.+h, 04.65.+e

Classical Einstein theory is the low-frequency limit
of quantum gravity. Although the correct quantum
theory is not yet known, recent developments in string
theory' suggest that it is a promising candidate. Its
slope expansion yields, in addition to the Einstein ac-
tion, corrections quadratic and higher in the curvature.
Of these, the quadratic term is of particular importance
because it is the leading one and can affect the gravi-
ton excitation spectrum near flat space. If, like the
string itself, its slope expansion is to be ghost free, the
quadratic term, if any, must be the Gauss-Bonnet
combination, which was first proposed for this reason
and appears to be present in the heterotic string. A
separate argument in its favor lies in the fact that the
new gravitational Chem-Simons term necessary for
anomaly freedom' of D = 10 supergravity requires the
presence of the Gauss-Bonnet term for supersym-
metry, 5 and, conversely, supersymmetrizing the
Gauss-Bonnet term requires the Chem-Simons term. 6

We propose here to analyze the properties of the ef-
fective gravity theory characterized by the Einstein
plus Gauss-Bonnet terms, in order to see whether any

qualitative properties of Einstein gravity are altered.
We shall conclude that the Gauss-Bonnet combina-
tion, unlike any other quadratic terms, leads to a vi-
able theory and that even the sign of its coefficient
must be that dictated by the string expansion. This
result is all the more remarkable because we shall see
that there is an intrinsic cosmological-constant prob-
lem in all higher-curvature theories, which this partic-
ular model solves in an elegant way.

In addition to the asymptotically flat solutions, there
is a cosmological, asymptotically anti-de Sitter branch.
Such branches are a generic feature of actions with two
or more curvature terms not involving explicit deriva-
tives plus any number with derivatives. However,
these solutions turn out to be intrinsically unstable:
The graviton excitations about this background are
ghosts, as is also confirmed by positive-energy sources
leading to negative-mass Schwarzschild-anti —de Sitter
solutions. We shall also discuss this branch in the
presence of higher-order curvature corrections and of
an explicit cosmological term, with qualitatively similar
conclusions.

The action we consider has the form

I = It+I2=„d x4 —g [R/rr+n(R„„pRt'" P —4R „R&"+R )],
with the convention R t'

&
—+ I t'&, R„&—= R"„»,R —= R„", and signature ( —,+, , + ). The action is in

a D—= n+2 dimensional space-time. In units of K=4(J dQ„) G, where I dQ„ is the area of a unit n-sphere,
Newton's constant G and tr have dimensions LD 3/M, while the expansion parameter Kn has dimension L, and
the cosmological constant trA always has dimension L . For D = 4, the Gauss-Bonnet term I2 is a topological in-
variant, and the only quadratic invariants with nonvanishing variations there are R„„Rt'" and R2. These will in
general lead to ghosts near flat space (h~„—= g„„—q„„((I) since their metric variations involve fourth time
derivatives. By contrast, I2 only contributes terms quadratic in h„„ in the field equations, which read

0 = 5I/Sg„„= —G""/t~ + n T~",

T„„=,' g„„(R p~sR P~ ——4R tsR P+R ) —2RR„„+4R„R „+4R tsR „P„—2R„p„R„P~.
(2)
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It is easy to see that Too is of indefinite sign as it stands. In Gaussian normal coordinates (go& = 7lo&),

Too= 4 (Roo+R ) + 4R JkRikt R i iRitk

It is useful to write the action (1) in terms of forms or vielbeins,

I = J (e
'' '' "R..., [cu, ,co,, +nKn(n —1)R..., ]co,, co, )(~n!) (3)

where R.,=d~.b+~. ~.b, d~'+~ b~ =0,
=e' dx~

u]. . . a e&. . . eD
I

cl ] 0 ~ 0 8 e] 0 ~ 0 eD

!
~O

The field equations then read

2K(n —1) (n —2)P'b

ei. . . eD
IA = (A/D! ) J e ' ' '

(4)

The field equations corresponding to (3) are simply
obtained by varying the basic one-forms co' because
the variations of the connection one-forms yield a total
derivative as long as the torsion vanishes. [These
results are readily obtained by use of the relations
des'+co'btob= 0= dR'b +a&', R'b +R', cu'b]. In partic-
ular, this means that one may regard (3) as being
essentially in Palatini form with ~' = e'„dx~ and
co'b = e"eb,.„dx& as independent variables; this will be
useful for an eventual canonical formulation of the
theory. In this connection, we also note that despite
being quadratic in curvature, the action depends only
on first time derivatives; hence the number of degrees
of freedom is the same as in Einstein gravity, and only
the definition of the canonical momentum will change.

Oi. . . 0= —(D —p) '50 ) ~ ~ o gp

and the Kronecker delta is totally antisymmetric in its
upper and lower indices. An explicit cosmological
term may be included as

b2b3 b4 b5 i b4b5= —5b, b, R..., (5,,5~, + , KaR...—, )

They are solved by the maximally symmetric spaces

R "«——z(5,'5db 5;5,'), —z= 0, —(~K) -',
where u= a(n —l)(n —2); this follows because 9 'b

reduces to —q' A (1+nhK)/~. With our conventions,
positive A. (as dictated by string theory 3) corresponds
to anti —de Sitter space.

Next consider small variations about these back-
grounds. Near flat space, we simply recover the ordi-
nary graviton,

0 5GQ (eQPe x5d i 5Qedve )L)5Rc

where the explicit e's are those of Minkowski space.
There is no contribution from the Gauss-Bonnet term
because the background curvature vanishes. Near
anti-de Sitter space, however, the background curva-
ture does not vanish and the variation is more delicate;
there will be contributions proportional to curvatures
times h as well as second derivatives of h. We obtain
from (5)

59' = (I +2nA~)5G'„+ (Xn/2)(5e'„—e'„eb "be,) [n —I +BEAK(n —3).], (7a)

where the vielbeins are those of anti —de Sitter space.
Since 6A.~ = —1, this becomes

—5G ~+A. n(5e ~
—e ~eb 5e „)

= 0= —5G„„+A(n + 1)(h„„——,
' g„„h„") (7b)

in vielbein and metric form, respectively. Note that
the Gauss-Bonnet contribution in (7a) is precisely of
the 5G' form but of opposite sign, reflecting the insta-
bility of anti —de Sitter space. The sign change in the
field equation reflects a sign change in the second vari-
ation of the effective action; this implies that relative
to anti —de Sitter space the kinetic terms have the op-
posite sign from that of the Minkowski-space kinetic
terms. The derivative part of the variation of the
Gauss-Bonnet term must be proportional to 56'„
since this is the only second-derivative combination
which can satisfy the Bianchi identity, while the non-
derivative terms in (7) are needed to assure that 59 ""

I

is covariantly conserved relative to the background
metric. The complete 5$~, is essentially the (back-
ground) Lichnerowicz d'Alembertian acting on the
metric or vielbein variation and it is easy to verify that
V'„5+"„=0.

The sign change above arises as follows: The back-
ground solutions are obtained by solving f(A. )—= A. + ~ah. = 0. The variations involve the slope
f'(A. ) of the parabola at the roots, X=O, —(Kn)
The slope is, of course, negative at the smaller inter-
cept —(Ku); it is this slope which determines the
sign of 52I.

Let us compare the cosmological excitations (7b) to
those of Einstein gravity with a ghost (negative
metric) graviton,

I = —K
' Jt d Xd —g [R +A~], (8)

the field equation for which is G„„=—,
' AKg„„[so that
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X = AK/n (n + 1)]; its variation is precisely (7b).
Thus, small excitations near the anti-de Sitter branch
of the Einstein plus Gauss-Bonnet theory are precisely
those of ghost cosmological Einstein gravity. As we
shall see, the ghost nature is also manifested in the
fact that a positive-energy matter source T"" leads to a
negative-mass Schwarzschild —anti —de Sitter solution in
which test particles are repelled.

We now derive the general spherically symmetric
solutions of our mode1; just as in the Einstein theory
their asymptotic forms also provide the leading correc-
tion to the backgrounds at infinity. (We remark that,

by spherical symmetry, neither the antisymmetric ten-
sor field nor the Chem-Simons terms which are also
present in the string expansion can contribute here or
alter the anti —de Sitter background solution). We
choose our interval in Schwarzschild gauge, and as-
sume time independence, although this should be un-
necessary, since we expect Birkhoff's theorem to hold
as there is only a tensor excitation. The calculations of
the various curvature components are straightforward,
and the problem may be further simplified by working
directly in the action. For general static geometries the
action may be a priori predicted (and explicitly veri-
fied) to have the form

I I, = J
d"+ X Njg[RK" +n(R""" R„„„—4R""R +R )]

where X=—( —gpp) t and all curvatures are intrinsic to the spatial section as indicated by the subscript s; this is be-
cause X continues, in this model as for Einstein, . to be the Lagrange multiplier for the 8 pp constraint. In our
gauge, ds2 = —e2~ dtz+ e2" dr2+ r2 d 0 2, I, reduces to the amazingly simple form

I, = n(4G) t dr e~+"[r"+ $(1+Knp)]', y=r (1 —e
—») (10)

The corresponding field equations integrate to

y(1+ Kny) = 2MG/r"+', e&+"= 1.

The constant M is, of course, the mass with the sign chosen to correspond to a positive semidefinite matter energy

density. For M = 0, we recover flat (P = 0) and anti-de Sitter [P = —(n~) 1 spaces, respectively. In general we

have

gpp= e ~ = e " = e ~= 1+ (rz/2npc) {1+ [1+(8GMnv/r" +t)]'tz),

the asymptotic behavior of which is

—
gpp

—1 —(2GM/r" ') or [1+(r /nK) ] + (2GM/r" '),

(12a)

(12b)

i.e., Schwarzschlld with positive gravitational mass or Schwarzschild-de Sitter with negative gravitational mass, with
the standard energy definition in background anti —de Sitter space. This illustrates our earlier statements about the
instability of the anti —de Sitter branch. Note that n has disappeared from the leading asymptotic corrections to the
respective backgrounds for both branches. However, n defines the background in the anti —de Sitter branch, which
shows that the solutions of the effective theory do not always reduce to Einstein spaces asymptotically; the Ein-
stein, "long wavelength, " limit is only recovered for distances smaller than the length defined by (nw) 't2.

If there is also an explicit cosmological term in the action, representing eventual supersymmetry breakdown, the
solution is still simple. A term Ad —g merely adds the constant A/n ( n + 1) to the left-hand side of the first equa-
tion of (11),with the result that the effective cosmological constant is

A, rr= [n (n + I)/2n~ ] (1 + {I—[4n~ A/n (n + 1)]' 2) );
the larger value will be unstable, the lower one stable.
Note that if 4AK n is greater than n (n + 1) the theory
is undefined. The corresponding form of (12) has the
same extra term in its square root as that in (13).

The singularity properties of the metric (12) may
easily be obtained. We consider only the stable
asymptotically flat regime, merely noting that the
anti-de Sitter branch (n & 0) has a naked singularity
at the origin but no horizons. Our first observation is
that the sign of o. is critical: The positive sign dictated

I

by the string expansion is the only physically sensible
one. For if a were negative, the metric would become
imaginary at r" +'= 8ini~MG. This is a real singulari-
ty, since the curvature invariants have branch singular-
ities there; furthermore the singularity is naked when,
as is possible, it occurs outside the event horizon,
gpp(rH) =0. For n & 0 there is in general always one
and only one horizon; goo vanishes at values rH such
that rHD +aKrH =2GM. For D ) 5, the left-hand
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side ranges monotomcally from zero to infinity with

r~, so that there is exactly one solution. For D =5,
the existence of a horizon depends on whether
26M —aK is positive, which is the case for macroscop-
ic masses. Otherwise, there is a naked conical singu-
larity at the origin. (That D =5 is special can be un-
derstood from the appearance of a factor D —5 in the
variation of T"".) While the value of ru at which the
horizon occurs differs from the Einstein one, the qual-
itative properties of the geometry are identical. The
usual Kruskal completion procedure goes through just
as in Schwarzschild, and Hawking radiation will still be
present.

Although Einstein (G„„=0) spaces are not general-
ly solutions of (2), it is interesting to mention one spe-
cial case which is, because it underlines the fact that
the Gauss-Bonnet term does not affect the propagator,
and in particular does not distort plane-wave solutions.
The plane-fronted parallel-ray metric, '0 although glo-
bally singular, is the nearest thing to a graviton in the
Einstein theory; it remains a solution here. The inter-
val ds2=2H(uxor) du2+2 du du+ dxi obeys G~„=O
iff '7iH= 0. Its only nonvanishing curvature com-
ponent is R",„I= rlIIH, which implies the vanishing of
R„»R„»and hence of a T~„since all other terms in
(2) vanish in Einstein geometries.

We conclude with some remarks about possible
higher-curvature corrections in the effective theory
given by the string expression.

For fixed D, there is only a limited number of
Gauss-Bonnet (eeR Re ) terms (e.g. , through
R4 for D =9 or 10), although there is no limit to
derivative powers —eeR Cl "Re e. There
seems in any case to be no a priori reason why only
these terms should appear, beyond the quadratic one,
and one should consider also generic R 3„, etc. ,
corrections. No higher-order terms can spoil the
asymptotically flat branch, since they do not contribute
to small excitations there. The only dangerous terms
are of the form R ~R, but note that, by the Bianchi
identities, eeR0 R is actually cubic in R. However,
this is not the case for the anti —de Sitter branch: Gen-
eric contributions of the form R~ will yield—V' (R~ ') terms in the field equations and so lead
to variations of the form R~ V25R — h. Gratify-
ingly, whatever the contributions to — h terms, the
Q h ghosts will exclude the anti —de Sitter branch by
stability arguments. More complicated is the effect of
higher-order Gauss-Bonnet terms. These will not
yield U 2h effects, but will contribute to 56„. Follow-
ing our discussion of the quadratic case, ~ will be
determined by a polynomial equation, f ( A. )
= A. (1+ckKX+y2A. K+ . ) =0, where the y; are
essentially the coefficients of the higher terms. To the
extent that there are real roots, the slopes at the inter-
cepts will have alternating signs and therefore the per-

turbations BG„will appear with both signs. (For ex-
ample, a cubic Gauss-Bonnet term with y2 & lx K/4
yields no real roots and hence no cosmological branch.
It would be interesting if this "prediction" were veri-
fied. ) So it is conceivable that there would be stable
anti —de Sitter sectors in the (unlikely) event that the
only corrections are of the Gauss-Bonnet type with
(un-)suitable coefficients. If, in addition, there is an
explicit cosmological term, the situation changes. Now
we have f (A. ) —A = 0 to solve, which cannot include a
flat background. Consequently, the ghost problem
could make all solutions unstable for generic R "
corrections, which is perhaps too neat a disposal of the
cosmological-constant problem! Presumably the string
either avoids the explicit A, or has only Gauss-Bonnet
corrections with suitable coefficients. We also note
that the scalar field which we have neglected here will
play a role in these questions.

What is the relation between the instability we noted
in the cosmological branch and the form of the total
energy for our model? If, as expected, ' a supersym-
metric generalization exists (presumably only for
n & 0), it may or may not have still higher-curvature
terms, but will in any case contain antisymmetric ten-
sor and scalar fields. By general classical supersym-
metry arguments, " the bosonic sector will have posi-
tive energy, if and only if it is free of ghost fermions. '2

(For example in D =4, R +R 2„+R theories are su-
persymmetrizable but, because they have ghosts, they
are unstable even near flat space. ) What we expect
here is that the total energy will be positive for the
asymptotically flat solutions, but not for the anti —de
Sitter branch.

We have seen that the leading string-generated
correction to Einstein gravity defines a theory with a
number of striking properties. In addition to being
ghost free near flat space, the model cures its own
cosmological-constant problem in an elegant fashion,
through just the sort of negative-energy instability in
the de Sitter sector which does not occur in the normal
Einstein plus cosmological term theory, or with gener-
ic quadratic curvature terms. Even in the presence of
an explicit A term, it prefers the lower effective
cosmological value. The sign of the correction term is
just that one which avoids singularities in the solu-
tions. For it, the "Schwarzschild" solution is perfectly
sensible, with the usual event horizon structure. We
also noted that cubic or higher corrections will only
reinforce the unique physically acceptable nature of
the asymptotically flat branch, since they imply una-
voidable ghosts in the anti —de Sitter branch. Howev-
er, it is too early to speculate on these higher-order
questions. There are sufficiently many unresolved
matters here: First is, of course, the effect of compac-
tification on our D & 4 dimensional constructions, and
of scalar and antisymmetric tensor fields which are
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present in the supergravity action, together with the
Chem-Simons term. It would also be useful to con-
struct the canonical formulation for this "already Pala-
tini" system, and to build up more extensive under-
standing of the space of allowed classical geometries
beyond the plane-wave Einstein solution given here.
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