Energy-Level Statistics of Integrable Quantum Systems

In a recent Letter,¹ Casati, Chirikov, and Guarneri (CCG) studied statistical properties of spectra for integrable systems. They found deviations from the expected uncorrelated Poisson distribution for energy levels.²

In view of the far-reaching implications of this result, it is worthwhile to check the behavior of these deviations in the semiclassical limit (large quantum numbers). Therefore, I extended the calculations of CCG and computed the distribution of level spacings,

$$E_N \equiv E_{m,n} = \alpha m^2 + n^2, \tag{1}$$

for $\alpha = \pi/3$ and for consecutive sequences of 10^4 levels. Figure 1 shows the χ^2 deviation from the Poisson distribution, for the first ten bins of size D/100 (D is the mean spacing). The dashed line is a smoothed version which could be regarded as an estimate of $\langle \chi^2 \rangle$. For $N < 2.5 \times 10^6$, $\langle \chi^2 \rangle$ falls below 16, which represents a 10% confidence level. (If more than ten bins had been taken, the decay of the deviations would

FIG. 1. χ^2 for consecutive sets of 10⁴ levels. The dashed line is the value of $\langle \chi^2 \rangle$ obtained by an averaging over sets of thirty consecutive data.

FIG. 2. The Δ_3 statistics: spectral average for (crosses) $0 < N_0 < 1850$, (solid circles) $0 < N_0 < 9000$, (dashed line) $10\,000 < N_0 < 19\,000$, and (dash-dotted line) $20\,000 < N_0$ $< 29\,000$. Here, N_0 is the index of the first level in the sequence for which Δ_3 is computed. The full line is the Poisson result $\overline{\Delta}_3 = L/15$.

have been slower.)

The $\Delta_3(L)$ rigidity measure is shown in Fig. 2. The transition from the L/15 behavior (which corresponds to Poisson statistics) to an almost constant value of $\overline{\Delta}_3(L)$ is shifted to larger values of L, as sequences from higher parts of the spectrum are involved. The Poisson result, $\overline{\Delta}_3 = L/15$, is obtained in the limit $N \rightarrow \infty$. This was checked for $290\,000 \rightarrow N \rightarrow 300\,000$. $\overline{\Delta}_3(L)$ was only slightly below L/15 and no transition was observed up to L = 1000.

In summary, deviations from Poisson uncorrelated statistics for energy levels in integrable systems seem to disappear in the semiclassical limit. This result was predicted by Berry and Taylor.²

It is a pleasure to thank S. Fishman and A. Peres for stimulating discussions.

Mario Feingold

Department of Physics Technion–Israel Institute of Technology 32000 Haifa, Israel

Received 16 October 1985 PACS numbers: 03.65.Ge, 05.45.+b

 $^{1}G.$ Casati, B. V. Chirikov, and I. Guarneri, Phys. Rev. Lett. **54**, 1350 (1985).

 $^2M.$ V. Berry and M. Taylor, Proc. Roy. Soc. London 356, 375 (1977).