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We discuss several experimental consequences of a lattice-gauge-theory calculation of the first
two moments of the 7 and p distribution amplitudes. The second moments for both mesons are
considerably larger than the values obtained from QCD sum-rule techniques. We show the qualita-
tive difference that this makes in the predicted distribution amplitude, and demonstrate the conse-

quences for the pion form factor and the yy — 7

PACS numbers: 12.35.Eq, 11.15.Ha, 13.40.Fn, 13.65.+i

Advances in lattice-gauge-theory calculations afford
one the opportunity to combine perturbative and non-
perturbative approaches to quantum chromodynamics
(QCD) in order to make high-energy predictions
without reference to low-energy data. We discuss here
several predictions based on the first two moments of
the 7 and p quark-distribution amplitudes.

QCD is generally accepted as the proper theory of
the strong interactions, largely on the basis of success-
ful predictions which are founded upon asymptotic
freedom! and perturbative applications? to short-
distance effects. However, these applications require
nonperturbative information, often in the form of ha-
dronic matrix elements of various strong-interaction
operators, or low-energy data.

Lattice-gauge theory® offers the hope of a first-
principles calculation of the hadronic spectrum,* a cal-
culation well beyond the scope of perturbation theory.
It also offers the ability to calculate the hadronic ma-
trix elements required for perturbative analyses, which
is a great step beyond treating them as unknown
parameters which must be determined from data.

Three applications are discussed in this Letter, the
distribution amplitude for = and p mesons, the pion
form factor, and the cross section for yy — 7%r%. Be-
fore we discuss the applications, let us briefly review
the distribution-amplitude formalism and the operators
whose hadronic matrix elements we calculate.

Exclusive scattering processes in QCD may be ex-
pressed in terms of hard-scattering amplitudes for con-
stituent quarks and gluons, and distribution ampli-
tudes for the constituents of the hadronic bound
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cross section.

states.’ In this way, the calculation is naturally split
into perturbative and nonperturbative parts, respec-
tively. In a physical gauge the distribution amplitude
¢ (x;,Q) is the probability amplitude to find consti-
tuents with momentum fractions x;, collinear up to
scale Q. For mesons it is convenient to define
{=x,— Xz Then the moments of the distribution am-
plitude,

AB(Q) =) [ e (t,0)d,, M

are proportional to matrix elements of local operators:

(k) (@
(olok ..., 1hy@
=A®(Q) (p,, - - * P, —traces), ()
where Q is the ultraviolet cutoff in the theory, and
Ok u, =i T, Dy - D, y—traces. (3)

Here I'y,=v,ys and vy, for the = and helicity-0 p
mesons, respectively, and D, is the gauge covariant
derivative. The double arrow denotes the difference
between the derivatives acting to the right and to the
left, i.e., D,L=D—5.

In order to calculate the matrix element of the re-
normalized operators in Eq. (3), we calculate bare
operators on the lattice and then form the renormal-
ized combination. This construction eliminates, at the
one-loop level, the power-law divergences which occur
with the lattice regulator.® The one-loop perturbative
calculation of Ref. 6 also determines how the scale Q
in the continuum is related to the lattice spacing. For
the pion, we have

4)

with the bare operators O(9 = a‘@oojnﬁfip, 09 =qa=1i"190ysy, and O =a~2yiyyyss. We have also used
0 = 03 as defined in Eq. (3), with subscript R (U) denoting the renormalized (unrenormalized) operator.
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For the p, we consider somewhat different operators, but a similar expression holds:

08P = 0P — CF%[ —13.6902 +9.570(@ +4.2809] (5)

is free of power-law divergences to O(a), with 0@ used to denote O@P+++ QO+ 4=1y;=15+y,
09+ =g~ 19,0 "4y, and OO+ =a~%yiy*y. In all cases, tensor components denoted with a plus sign refer to
light-cone coordinates, i.e., p* = — ip®+ p’, if the p is moving in the i direction. We refer the reader to Gottlieb
and Kronfeld’ for further details.

Once it is seen how the operator is renormalized, its single meson matrix element may be simply calculated on
the lattice by calculation of correlation functions of the bare operators. Defining

C () =(3, 07 (x,) 0" (0,0)), ©6)
for large tand N4— t, we have
CP (1) = (0|0 |z (x| 0®7|0) (2m")—1(e—mﬂ'+e—mw(Nr’))’ 7

where N, is the lattice periodicity in the time direction, and m,, is the pion mass. A similar expression holds for
the operators which create p mesons. We immediately see that for long time,

C(”)(l‘) _ <0|0(n)|7.r>
CO®(  (0loW|r) "

Thus, it is easy to extract the ratios of matrix elements for different operators by calculation of appropriate correla-
tion functions. For C (0), one fits the correlation function according to Eq. (7) in order to determine the matrix
element of 0@, .

The calculation was done with use of gauge configurations and fermion propagators which had been generated in
order to calculate strong decays of mesons and baryons.® There were nineteen configurations on a 62x 12 x 18 lat-
tice with a coupling 8=75.7. The value of the string tension was used to determine the lattice spacing, a~!=993
MeV. The fermionic part of the action is given by

Sp= 3 bW () +K 3, GO =08,z (r 49,08, 10w (), ©)

R (1) =

(®

where r is the chiral-symmetry—breaking parameter, |

and K is the hopping parameter. In this calculation, r fifth column is not the ratio of the fourth and third

was set to 0.5, and quark propagators were known for columns. The zeroth moments are related to the
K =0.325, 0.34, and 0.355. As usual, it was necessary and p decay constants and may be directly compared
to extrapolate in the hopping parameter (which deter- with the experimental values. This calculation had
mines the quark mass) to the physical value, K,, been done in previous lattice Monte Carlo simula-
determined by setting the pion mass equal to 140 tions.® The first moments should vanish by charge-
MeV. conjugation invariance, and on the lattice we find that

The numerical results for distribution-amplitude CW s alternating in sign and 2 orders of magnitude
moments 4 and 4 are displayed in Tables I and smaller than C® or C®. The new quantities present-

II. Reference 7 explains how 4/4© is calculated ed in this Letter are the values for A (Q=17.5
independently of 42 and 4 and, hence, why the GeV) =235 +25 MeV and A ? (Q=6.8 GeV) =260

TABLE 1. Results for the = extrapolated to the physical TABLE II. Results for the p extrapolated to the physical
value of K. All quantities are dimensionless; physical units value of K. All quantities are dimensionless; physical units
can be restored by use of a~1=993 MeV. can be restored by use of a~1=993 MeV.

A.,S.z) A2
K m,% A#O) A,,SZ) y @) K m, AP(O) A;Z) L
™ P

0.325 1.000(40)  0.243(8) 0.133(5) 0.547(20) 0.325 1.07(4) 0.382(32) 0.146(14) 0.383(30)
0.340 0.723(34) 0.215(13) 0.159(8) 0.735(40) 0.340 0.94(5) 0.346(44) 0.176(20) 0.507(30)
0.355 0.476(55) 0.184(20) 0.192(20) 1.05(10) 0.355 0.81(4) 0.312(60) 0.229(30) 0.73(11)
0.379(5) yields K, 0.140(28) 0.235(25) 1.37(20) 0.379 0.60(9) 0.254(110) 0.261(50) 0.933(20)
Expt. 0.020 0.133 Expt. 0.775 0.216
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+50 MeV. Let us explore the implications of these
values.

The fact that 42 > 459 implies that the distribu-
tion amplitude ¢ must be negative somewhere. For
the p, however, 4,2 ~ 4% and a node in the ampli-
tude is only strongly suggested. In Fig. 1 we show the
pion distribution amplitude as reconstructed from the
first two moments. We also show the large- Q? asymp-
totic limit of the amplitude and the amplitude as deter-
mined in the work of Chernyak and Zhitnitsky,°
where QCD sum rules!! have been used to evaluate

]

5 2y 87 2 A:;_
Q*F,(Q%)=CF . as(Q%) ,.ezven 2+n)(1+n)

In Fig. 2, we show the prediction for the pion form
factor as determined from our two moments and Eq.
(11), but multiplying the form factor by (1
+m2/0?)~! to match the behavior of vector-
dominance models!? at low Q?. Again we display the
result as obtained by QCD sum rules as well as the
asymptotic curve obtained from A©_ 1t is clear that
our value of 4 requires some substantial negative
higher moment. The calculation of operators with yet
higher derivatives seemed impractical on the size lat-
tice that we used. Future simulations with weaker
coupling, and hence smaller lattice spacing, might find
such a calculation practical and interesting. In fact, if
only the first two moments can be calculated, these
values would provide a check of scaling. A study of
scaling is particularly important because of the rela-
tively strong coupling used here. Although 8=15.7
was once thought to mark the onset of the asymptotic
scaling region, a recent finite-temperature study of
QCD B3 indicates that 8=6.15 does. The calculation
done here should be repeated by any group doing spec-
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FIG. 1. The = distribution amplitude for various values
of A(Q). Curve a, the asymptotic result 4 (Q)=0.
Curve b, the result from QCD sum rules (Ref. 10). Curve
¢, the result of the present numerical work.

- 2
A,(T")(Qz) .

the moments. Our calculation gives a much larger
value for 4? than the work based on QCD sum rules.
With our large value of A@ there is quite a significant
probability for the quark and antiquark in the meson to
share their momentum equally (¢ is big near {=0);
however, that is not the case for the QCD sum-rule
result.

The pion form factor at large Q? is determined by
the Gegenbauer moments of ¢, ({,0Q). Defining

/15,">(Q)=(znc)‘/2f_lldc CP(Q$(,0), (10)

we have, 2

an

tral calculations in that coupling region. Even a quali-
tative evaluation of the fourth moment would be of in-
terest in light of the cancellation needed to bring about
agreement with the pion form factor. It is also worth
noting that the techniques developed here were ap-
plied to fermion propagators for gauge field configura-
tions distributed according to the quenched approxi-
mation. As soon as this approximation can be re-
moved from simulations, this calculation can easily be
repeated with a more realistic set of gauge configura-
tions.

The final prediction that we wish to discuss is that of
pion pair production from two-photon collisions.!*
The cross section for neutral pions depends sensitively
upon the shape of the pion distribution amplitude.
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FIG. 2. The pion form factor. Curve a, asymptotic
theoretical prediction. Curve b, QCD sum-rule prediction.
Curves cand d, the prediction of the present work, assuming
that higher moments are negligible (they are not), and using
extrapolations of columns five or four of Table I, respective-
ly. The points are from ep — enw* (squares) [C. Bebek et
al., Phys. Rev. D 17, 1963 (1978)] and ¢ — 7 *«~ (dia-
mond) [C. G. Wohl et al. (Particle Data Group), Rev. Mod.
Phys. 56, No. 2, Part II (1984), tabulate I'(y — 7 +7~) and
F(y— ete™). A trivial calculation yields the form factor].
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FIG. 3. Cross section for yy — mw%n°, scaled by the form
factor as suggested in Ref. 12. Curves a-d correspond to
the methods listed in Fig. 2.

Unfortunately, there is no simple formula in terms of
the moments of the amplitude. It is necessary to first
reconstruct the amplitude as best one can from the
known moments. In Fig. 3, we display the cross sec-
tion using our values for 4(® and A4 ? assuming that
higher moments vanish.

Lattice-gauge theory enables one to calculate matrix
elements for interesting operators with covariant
derivatives. Knowledge of these matrix elements is
crucial input to many types of perturbative predictions.
Future calculations can and should be done to check
scaling and to probe higher moments than those stud-
ied here.
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