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Experimental Predictions of Lattice and Perturbative Quantum Chromodynamics
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We discuss several experimental consequences of a lattice-gauge-theory calculation of the first
two moments of the m. and p distribution amplitudes. The second moments for both rnesons are
considerably larger than the values obtained from QCD sum-rule techniques. We show the qualita-
tive difference that this makes in the predicted distribution amplitude, and demonstrate the conse-
quences for the pion form factor and the yy m m cross section.

PACS numbers: 12.35.Eq, 11.15.Ha, 13.40.Fn, 13.65.+i

Advances in lattice-gauge-theory calculations afford
one the opportunity to combine perturbative and non-
perturbative approaches to quantum chromodynamics
(QCD) in order to make high-energy predictions
without reference to low-energy data. We discuss here
several predictions based on the first two moments of
the vr and p quark-distribution amplitudes.

QCD is generally accepted as the proper theory of
the strong interactions, largely on the basis of success-
ful predictions which are founded upon asymptotic
freedom' and perturbative applications2 to short-
distance effects. However, these applications require
nonperturbative information, often in the form of ha-
dronic matrix elements of various strong-interaction
operators, or low-energy data.

Lattice-gauge theory3 offers the hope of a first-
principles calculation of the hadronic spectrum, 4 a cal-
culation well beyond the scope of perturbation theory.
It also offers the ability to calculate the hadronic ma-
trix elements required for perturbative analyses, which
is a great step beyond treating them as unknown
parameters which must be determined from data.

Three applications are discussed in this Letter, the
distribution amplitude for 7r and p mesons, the pion
form factor, and the cross section for yy vrorro Be-.
fore we discuss the applications, let us briefly review
the distribution-amplitude formalism and the operators
whose hadronic matrix elements we calculate.

Exclusive scattering processes in QCD may be ex-
pressed in terms of hard-scattering amplitudes for con-
stituent quarks and gluons, and distribution ampli-
tudes for the constituents of the hadronic bound

= A t "l ( g) (p„.. p „—traces), (2)

where g is the ultraviolet cutoff in the theory, and

O„tel, . . . ~„=i QI „,D„, D„„P—traces. (3)

Here I „=y„y5 and y„ for the m and helicity-0 p
mesons, respectively, and D„ is the gauge covariant
derivative. The double arrow denotes the difference
between the derivatives acting to the right and to the
left, i.e., D„=D—D.

In order to calculate the matrix element of the re-
normalized operators in Eq. (3), we calculate bare
operators on the lattice and then form the renormal-
ized combination. This construction eliminates, at the
one-loop level, the power-law divergences which occur
with the lattice regulator. The one-loop perturbative
calculation of Ref. 6 also determines how the scale Q
in the continuum is related to the lattice spacing. For
the pion, we have

states. s In this way, the calculation is naturally split
into perturbative and nonperturbative parts, respec-
tively. In a physical gauge the distribution amplitude
@(x;,Q) is the probability amplitude to find consti-
tuents with momentum fractions x;, collinear up to
scale g. For mesons it is convenient to define
( = x~ —x-. Then the moments of the distribution am-

plitude,
pl

2 " (g) = (2n, )'
~ j"@((,g)dt,

are proportional to matrix elements of local operators:

O„t» = OP& —C, [1.580'&+ 4.S30t &+ 2.580&"]

with the bare operators Ot'l = a 'Qaoyy5D~IIt, Ot'l = a 'i 't)o.gy5$, and Ot l = a piyoy5$. We have also used
Ot2l = 0&to2tI as defined in Eq. (3), with subscript R (U) denoting the renormalized (unrenormalized) operator.
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For the p, we consider somewhat different operators, but a similar expression holds:

0 = OP —C [ —13.690 ' +9.570 ' +4.280 ]R F4

is free of power-law divergences to O(n), with 0( ) used to denote 0( )+++, 0(')+ = a 'Qi 'a+Q,
0(')+ = a 'B~ga-+JP, and O(0)+ = a 2giy+P. In all cases, tensor components denoted with a plus sign refer to
light-cone coordinates, i.e. , p+ = —ipo+ p', if the p is moving in the i direction. We refer the reader to Gottlieb
and Kronfeld for further details.

Once it is seen how the operator is renormalized, its single meson matrix element may be simply calculated on
the lattice by calculation of correlation functions of the bare operators. Defining

c'"'«) =(g o™(x,i)o""(o,o)), (6)

for large t and X4 —t, we have

c("&(t)=(o~o(")~ )( ~o('&'~0&(2 .)-'( "+ ' ' "),
where X4 is the lattice periodicity in the time direction, and m is the pion mass. A similar expression holds for
the operators which create p mesons. We immediately see that for long time,

C(n) ( t) (0 ~

O(n)
~ ~) (8)C' (t) &0~O')~~)

Thus, it is easy to extract the ratios of matrix elements for different operators by calculation of appropriate correla-
tion functions. For C(0), one fits the correlation function according to Eq. (7) in order to determine the matrix
element of 0 o .

The calculation was done with use of gauge configurations and fermion propagators which had been generated in
order to calculate strong decays of mesons and baryons. s There were nineteen configurations on a 6 & 12&& 18 lat-
tice with a coupling P= 5.7. The value of the string tension was used to determine the lattice spacing, a '=993
MeV. The fermionic part of the action is given by

SF=/ y(x)y(x)+K X y(x)[(r —y )8 +-+(r+y )5 -]U(xy)y(y),

where r is the chiral-symmetry —breaking parameter,
and K is the hopping parameter. In this calculation, r
was set to 0.5, and quark propagators were known for
K =0.325, 0.34, and 0.355. As usual, it was necessary
to extrapolate in the hopping parameter (which deter-
mines the quark mass) to the physical value, K~,
determined by setting the pion mass equal to 140
MeV.

The numerical results for distribution-amplitude
moments A and 3 2 are displayed in Tables I and
II. Reference 7 explains how A(2)/A( ) is calculated
independently of A(2) and A(0) and, hence, why the

fifth column is not the ratio of the fourth and third
columns. The zeroth moments are related to the m.

and p decay constants and may be directly compared
with the experimental values. This calculation had
been done in previous lattice Monte Carlo simula-
tions. 9 The first moments should vanish by charge-
conjugation invariance, and on the lattice we find that
C(') is alternating in sign and 2 orders of magnitude
smaller than C(o) or C(2). The new quantities present-
ed in this Letter are the values for A (2) (Q=7.5
GeV) =235+25 MeV and A (Q=6.8 GeV) =260

TABLE I. Results for the m extrapolated to the physical
value of K. All quantities are dimensionless; physical units
can be restored by use of a '= 993 MeV.

TABLE II. Results for the p extrapolated to the physical
value of K All quantities are dimensionless; physical units
can be restored by use of a ' = 993 MeV.

0.325
0.340
0.355
0.379 (5)
Expt.

2m

1.000 (40)
O.723 (34)
0.476 (55)
yields K~
0.020

0.243 (8)
0.215 (13)
0.184 (20)
0.140(28)
0.133

0.133(5) 0.547(20)
0.159(8) 0.735 (40)
0.192(20) 1.05 (10)
0.235 (25) 1.37(20)

0.325
0.340
0.355
0.379
Expt.

1.07 (4)
0.94(5)
0.81(4)
0.60(9)
0.775

g (O)
P

0.382(32)
0.346 (44)
0.312 (60)
0.254 (110)
0.216

g (2)
P

0.146 (14)
0.176 (20)
0.229 (30)
0.261 (50)

g (2)
P

g (0)
P

0.383 (30)
0.507 (30)
0.73 (11)
0.933 (20)
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