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The necessary and sufficient conditions under which fully probabilistic cellular-automata (PCA)
rules possess an underlying Hamiltonian (i.e., are "reversible" ) are established. It is argued that,
even for irreversible rules, continuous ferromagnetic transitions in PCA with "up-down" sym-

metry belong in the universality class of kinetic Ising models. The nonstationary (e.g. , periodic)
states achieved for asymptotically large times by certain PCA rules in the (mean field) limit of in-

finite dimension are argued to persist in two and three dimensions, where fluctuations are strong.
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Cellular automata (CA) are regular arrays of vari-
ables, each of which can assume two or more discrete
values and evolves in discrete time steps according to a
set of local rules which may be either deterministic or
probabilistic. ' They are used to model problems in
physics, chemistry, biology, and computer science.
The goal is to determine, for any given rule, the na-
ture of the state of the system for asymptotically large
time (r ~), and to identify the universality classes
of the phase transitions that occur as the rules are
varied. In this paper we study probabilistic cellular au-
tomata (PCA) with two states per site. Our main
results folio~:

(1) We establish the necessary and sufficient condi-
tion under which a PCA rule is "microscopically rever-
sible, " i.e., the transition probabilities obey detailed
balance for some underlying Hamiltonian; as t
the system is therefore described by the stationary
(equilibrium) Boltzmann distribution corresponding to
that Hamiltonian. The condition depends on whether
the rule is applied by updating the spins simultaneous-
ly or sequentially.

(2) Continuous transitions into stationary ferromag-
netic states of PCA which do not have associated
Hamiltonians (i.e., are "irreversible" ) but which do
have the "up-down" symmetry familiar from Ising
models, are argued to fall, for both statics and dynam-
ics, in the same universality classes as kinetic Ising
models. 3 Thus, at ferromagnetic critical points, fully
PCA coarse grained to sufficiently large length scales
possess underlying Hamiltonians, even if they do not
on microscopic scales.

(3) As in equilibrium statistical mechanics, there
exists a systematic expansion for PC A in inverse
powers of d, the dimension. In the d =~ limit one
obtains mean-field theory (MFT): The evolution of
the CA is described by an iterative map with one
variable —the average magnetization —which, for ap-

propriate rules, exhibits time-dependent asymptotic
behavior, including limit cycles, chaos, etc. Vfe argue
that such time dependence is not an artifact of MFT,
but survives the strong fluctuations present in few
dimensions. Guided by the analytic results available at
d =~, we construct fully probabilistic, local rules in

d = 2 which produce, under numerical simulation,
nonstationary states, viz. , two-, three-, and four-
cycles, as t ~. %e have also found rules which lead
to what we believe are chaotic states.

%e consider CA on d-dimensiona1 hypercubic lat-
tices with W sites, labeled i, each occupied by an Ising
spin S; = + 1. With P((S,},t) the probability that the
system is in the state (S;) at time r, the discrete master
equation

~((S,),r+» = X~«S, ), r) IIQ(S, IS„(S,}) (»
Is, }

describes the PCA's time evolution. Here
Q(S, (S, , (S.,)) is the probability that the ith spin as-

sumes the value 5; at time t +1, given that this spin
and its "neighborhood" —a set of z spins located on
nearby sites (i')—have the values S, and (S,'}, respec-
tively, at time t. The rule is defined by specifying the
neighborhood and the 2'+' nonzero independent pro-
babilities Q. We consider only "fully probabilistic"
rules, i.e. , ail transition probabilities Q strictly greater
than zero. Equation (1) clearly describes simultaneous
(synchronous) updating of the spins; one can, alterna-
tively, update single spins in a random sequence, i.e. ,
sequentially. &e reduce the number of independent
Q's to z + 1 by considering "totalistic" CA, ' i.e.,
Q = Q (S;~S;, g. , S., ), and imposing up-down sym-

metry: Q (S, ~S, , g. , S., ) = Q ( —S; ~

—S, , —g. , S., ). The
rule is then completely specified by the z + 1 values
of the function f (M, ) = Q ( —1(l,zM, ), where M;
= ( I/z )g, , S., is the average magnetization of the

neighborhood of i.
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Kinetic Ising models [i.e., those (reversible) PCA
which satisfy detailed balance for some associated
Hamiltonian and so approach the Boltzmann distribu-
tion as t ~1 are well understood. Hence it is useful
to derive conditions under which CA rules are reversi-
ble. First consider simultaneously applied rules. De-
tailed balance requires the existence of a Hamiltonian
0 such that for any two states [S;) and [S,),

II, Q(S, IS„5,,})/Q(S, IS„H,,))
= exp(H [S,) —0 (S,}). (2)

Consider for simplicity a one-dimensional, totalistic,
up-down-symmetric PCA, the neighborhood of S; con-
sisting of the two near neighbors S;+1 and S; 1, so
that z = 2. Q can then be written in the form

Q = A exp[S; (aS; + bM, + cS;S;+~S; t) ],
where A is an arbitrary even function of the S's but is
independent of S;, and a, b, and c are arbitrary con-
stants. It follows from (2) that the associated 0 can
consist of at most nearest- and next-nearest-neighbor
two-spin interactions. It is then easy to check by con-
sidering two specific updatings of the system, viz. , (1)
only the ith spin flips (i.e. , S, = —S;), and (2) only
the ith and (i+1)st spins flip, that unless c=0 de-
tailed balance cannot be satisfied for all pairs of states.
Similarly, consideration of the updatings in which (1)
only the ith spin flips, and (2) only the (i+1)st spin
flips, shows that detailed balance can be satisfied for
all pairs of states for any values of a and b. Invoking
the fact that Qis a probability, i.e.,

Q(S;IS, , 2M, ) =1,

then immediately establishes the most general form of
Q [or, equivalently, of f'(M) ] for reversible rules as

f(M) = [1—tanh(a + bM) ]/2.

z is straightforward but tedious; the result (3) contin-
ues to hold. Equation (3) implies that no simultane-
ously applied, up-down symmetric rule with more than
two independent parameters can be reversible.

For sequentially applied rules the criterion for rever-
sibility is simpler to derive since only single spin flips
need be considered. The criterion depends on z. For
nearest-neighbor rules (z = 2d) the necessary and suf-
ficient condition for the existence of an underlying
Hamiltonian is f(M) =f, (M) [1—tanh(AM)], where
A. is an arbitrary parameter and f, an arbitrary even
function of M. As the range of the rule increases, the
restriction on f (M ) required to ensure reversibility
becomes progressively less stringent. For infinite-
ranged CA (z = N) it can be shown that every fcorre-
sponds to an underlying Hamiltonian, H, which typi-
cally involves infinite-ranged, multispin interactions.

These results imply that there are, rather surprising-
ly, rules [viz. , those of the form (3) with a &0] which
do not obey detailed balance under sequential updat-
ing, but which do when simultaneously applied. The
converse is, of course, also true, and is not surprising.
While we have considered only totalistic rules, our
methods can be simply generalized to establish condi-
tions for the existence of underlying Hamiltonians for
arbitrary PCA.

We now discuss the universality classes of the con-
tinuous ferromagnetic transitions which can occur
between stationary states of irreversible PCA with up-
down symmetry when the probabilities f are varied.
We first discuss MFT for PCA: From (1) one can
readily construct an infinite hierarchy of coupled equa-
tions involving equal-time correlation functions of
progressively higher order. For large z, this hierarchy
can, just as in equilibrium statistical mechanics, be
systematically decoupled in an expansion in powers of
1/z. The MF limit, z = ~, is simple, even for irreversi
hie CA: The time evolution is completely character-
ized by the average magnetization M(t) = (S;),. It is
straightforward to verify from (1) that in this limit
M(t) obeys the one-variable recursion relation

M(t+1) =g(M(t)) =M(t) —2[f, (M(t))+M(t)f, (M(t))], (4)

where f, and f, are the odd and even parts of f,
respectively. This iterative map g has a fixed point at
M =0 (corresponding to the "paramagnetic" state).
Other fixed points with M & 0 ("ferromagnetic"
states) may occur, depending on the details of g(M).
The stability criterion for a fixed point is5
1g'(M')1 & 1. Rules for which, at some critical value
of the parameters, a stable ferromagnetic and an un-
stable paramagnetic fixed point coalesce, producing a
stable paramagnetic fixed point, lead to continuous
ferromagnetic phase transitions. From (4) one obtains
the respective values —,

' and 1 for the associated critical

exponents p and y. These are the conventional MF
results of equilibrium critical phenomena. Alternative
formulations of MFT for PCA in finite d yield the
conventional values v= —,, q=0, and the mean-field
dynamical exponent, z = 2. In equilibrium critical
phenomena, the upper critical dimension, d„can be
identified as that d at which the hyperscaling relation
p = (v/2) (d —2+ q) is satisfied by the MF ex-
ponents. Postulating the validity of this identification
for CA we find, as in the static equilibrium case,
d, =4. For d & 4, then, all continuous transitions into
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ferromagnetic states in PCA are characterized by the
standard MF exponents.

To study the effect of fluctuations for d & d, =4,
consider the Langevin equation,

&y;/~& = Q;((y, })+q;(&),

where p;, a classical field at site i, assumes any value
between —~ and + ~, Q; is an analytic function of
the [PJ},and q; is a Gaussian random noise variable of
zero mean. The critical behavior of kinetic Ising
models is described3 by (time-dependent Ginzburg-
Landau) equations of the form (5) with Q;([Qi})
= —I tlH([p, })/t)p; and q;q, =2I 5,, 5(t —t'). Here
H ( (p,.}) is the Ginzburg-Landau representation of the
underlying Hamiltonian, I is the dissipation constant,
and this specific choice for q;qj ensures'o that in the
t ~ limit the system is described by the Boltzmann—H( {Pjj)distribution, e ' . Critical phenomena in kinetic
Ising models have been intensively studied through
application of the e expansion to this special case of
(5).

It is natural to hypothesize that the critical behavior
of PCA which do not admit underlying Hamiltonians
can likewise be described" by Eq. (5), with Q analytic
in [PJ} but not expressible as —I' BH/Bg; for any H
(i.e. , with BQ;/Bpj aBQJ/BQ;). For short-ranged PCA
with up-down symmetry, Q, must then be an odd
function of p; and of some appropriate neighborhood,
[P, ,},of i. For example,

Q;=~ X y, +B X y, , y, , y, , +O(q5) (6)

(the various i' being summed over all nearest neigh-
bors of i) represents, for arbitrary coefficients 3 and
8, a nearest-neighbor rule. The absence of an under-
lying Hamiltonian for Be 0 eliminates the
fluctuation-dissipation theorem; q, qj can thus be tak-
en to be an arbitary even function of the [pj}, e.g. ,

'2

q;(t)qJ(t') = h~ 5(t —t') [I o+I tP; +. . .], for con-
stants I 0 and I &.

Note that the difference between the (Q;} which
result from CA with and without underlying Hamil-
tonians is quite subtle. For example, the standard
nearest-neighbor P Ginzburg-Landau Hamiltonian
gives rise to a Q, which consists only of terms linear
in p; and p. , and a cubic term, P,3. It is therefore very

similar to the Q; of Eq. (6). The sole difference lies in
the wave-vector dependence of the cubic terms in (6).
Such wave-vector dependence is irrelevant under the
renormalization group in d = 4 —e. ' Indeed, it is
easily shown that in d=4 —e, the dynamical fixed
point of the standard kinetic Ising model with no con-
served variables is stable with respect to all additional
analytic terms introduced by elimination of the under-
lying Hamiltonian without breaking of either the lat-

tice or the up-down symmetry. One concludes (sub-
ject to the usual caveats concerning one's inability to
establish more than local stability of fixed points and
the dangers of extrapolating from d = 4 —e to physical
dimensions) that fully PCA with up-down symmetry
and a nonconserved order parameter fall, for both stat-
ics and dynamics, in the universality class of the ordi-
nary Ising model with no conservation laws. Similar
arguments show that rules which conserve the order
parameter (and so are not fully probabilistic) give rise
to ferromagnetic transitions in the universality class of
the Ising model with conserved order parameter.
Thus, near second-order phase transitions, irreversibil-
ity on microscopic length scales renormalizes away,
producing, on large scales, reversible systems.

We now discuss nonstationary asymptotic behavior
of PCA. It is known from the theorys of one-variable
iterative maps that by suitable variation of g (M) [viz. ,
g'(M') ( —1] the ferromagnetic fixed point of the
(simultaneously updated) MF model (4) can be ren-
dered unstable. At its stability limit, this fixed point
can bifurcate to a two-cycle, wherein the average mag-
netization alternates in time between two distinct
nonzero values. Indeed, for appropriate choices of g,
it is possible to find all the diverse features of single-
variable maps, s notably bifurcation sequences accumu-
lating to states wherein M is a chaotic function of time.
The occurrence of such nonstationary states in MF ap-
proximations of PCA has been previously pointed
out, but little is known about their stability with
respect to fluctuations. [Note that the time-dependent
asymptotic behavior in Refs. 6a and 6b occurs for re
versi ble rules, either simultaneously (Ref. 6a) or
sequentially (Ref. 6b) applied, treated in uncontrolled
MF-like approximations. We believe that this is an ar-
tifact of the particular approximations employed, and
that only irreversible PCA can exhibit time dependence.
For simultaneously applied PCA it is easy to verify
from (4) and the monotonicity of f in (3) that in the
d = ~ limit no reversible rule can produce time depen-
dence. ]

Since, for totalistic nearest-neighbor (i.e. , z = 2d)
rules, MFT is exact in the d = ~ limit, fluctuation
corrections to it are conveniently studied in the sys-
tematic 1/d (i.e., 1/z) expansion mentioned earlier.
As in statistical mechanics it is easy to show that4 to
O(1/d) only M(t) and the nearest neighbor correla--
tion function G (r) = (S;Si),—M (t) are required for
a complete characterization of the time evolution; all
other correlations are of O(1/d ). Similarly, to any
finite order in 1/d the hierarchy of coupled equations
reduces to an n-variable iterative map, for some finite
n. Two-variable maps are known to exhibit the bifur-
cation route to chaos5; the qualitative features of MFT
are thus preserved to O(1/d) for appropriate rules.
While the behavior of maps with more variables can be
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extraordinarily complex and few analytic results are
known, one expects, as in statistical mechanics, that,
for systems with discrete symmetry far from critical
points (i.e., when spatial correlations are short) MFT
should remain a good guide even for d = 2 or 3; time-
dependent states ought, therefore, to occur for ap-
propriate rules.

To test this expectation we have performed Monte
Carlo simulations on simultaneously updated PCA on
square lattices in d = 2. We computed M (t ) for
t = 1, 2, . . . , t,„, and studied the power spectrum of
M. Peaks in this spectrum which occur at rational fre-
quency and which sharpen and grow as the sample size
is increased, and do not broaden or shrink with in-
creasing t,„, were taken as the signature of periodic
states. The parameter space of possible rules is, of
course, vast; selecting simple rules in a relatively arbi-
trary way never led us to time-dependent states. We
systematized the search by considering totalistic CA
with neighborhoods consisting of (2n + 1) x (2n + 1)
squares of sites for n = 1, 2, . . . , 8; thus z = 4(n + n ).
Using the known criterion [i.e. , large ~g'(M') ~] for
the occurrence of nonstationary states in MFT (which
provides a progressively better description as z in-
creases, becoming exact at z = ~) as a guide, we suc-
ceeded in constructing rules which undergo limit cy-
cles with periodicities 2, 3, and 4 on samples of size up
to 150 && 150 and t,„ofup to 100000. The three- and
four-cycles occurred, however, only for n ~ 3 (i.e. ,
z ~ 48) and n ~ 8 (z ~ 288), respectively. We have
also found rules (for z = 80) which yield what we be-
lieve are chaotic states, as evidenced by a broad power
spectrum which persists for the largest samples that we
studied (200 X 200), but have yet to observe a periodic
state with period ) 4, much less a complete bifurca-
tion sequence, which MFT predicts. We therefore
consider the evidence for the stability with respect to
fluctuations of the chaotic state less compelling than
for the two-, three-, and four-cycles. A noteworthy
feature of the simulations is the strong stabilizing ef-
fect of fluctuations on stationary states: Rules which
produce time-dependent states within MFT typically
give stationary behavior, or at most two-cycles, until z
gets rather large ( —50). This does not preclude non-
stationary states with large periods for smaller z, but
indicates that they occupy progressively smaller re-
gions of the huge available parameter space as z de-
creases.
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