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Morphology of a Class of Kinetic Growth Models
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We study a class of local probabilistic growth processes that includes the kinetic-growth algorithm
for generating percolation clusters. The shapes of the gro~ing clusters are controlled by p, the pro-
bability of growth. For p & p„the shapes are scale invariant with time and show interesting mor-
phological features including both smoothly curved sections and straight facets. The facets are
shown to be related to the problem of directed percolation and disappear below the directed-
percolation threshold. A simple random-walk model for computing the shapes of our clusters is
described.

PACS numbers: 05.90.+ m, 05.40.+j, 61.50.—f

Among the many models of kinetic growth
processes are a set in which the growing object
develops according to some strictly local rules which
govern the addition of particles to the cluster. Such
models may be either deterministic, so that the distri-
bution of new growth is completely fixed once the
geometry and history of the existing structure is speci-
fied, or probabilis'ic, in which the growth rules are im-
plemented according to some set of probabilities (P).
Both types of models have appeared in the study of a
variety of topics including cellular automata, epidemic
models, cluster growth models, etc. ' One such model
is the algorithm of Broadbent, Hammersley, Leath,
and Alexandrowicz which kinetically generates per-
colation clusters. Previous studies of the probabilistic
models have generally concentrated on values of {P)
near a critical value such that the growth is marginal,
often giving rise to fractallike structures.

In this Letter we wish to broaden the scope of these
studies and begin the investigation of a class of proba-
bilistic local growth models for a range of values of
(P). In particular we are interested in studying the
shape of the growing cluster as a function of (P).
When (P} is away from the critical value, such that the
growth probability is enhanced, we find that the cluster
grows with a very regular scale-invariant shape which
reflects, in a specific way, the anisotropy of the under-
lying lattice, and which varies as a function of {P).
Moreover, far from the critical value of (P}, the shape
varies little from one model to the next, although oth-
er features such as the density of the cluster may vary
more. As we shall explain below, we have been able
to relate characteristic changes in the morphology as a
function of {P) to the critical behavior of certain other
growth processes such as directed percolation. Fur-
thermore, we have been able to understand qualita-
tively the shape of our clusters in terms of a simple
calculable model of random walks which approximates
our growth processes.

In the class of models that we have studied the
growth algorithm at a given time step is applied in the
region of particles which were added to the cluster in
the previous time step. Thus growth sites stay active
for one (or, more generally, a finite number) of time
steps. Such growth processes we call generational.
One example of such a model (and the one that we
shall focus on in most of this paper) is the following
process: Place a seed particle at a site on a two-
dimensional square lattice. In the first time step check
the four neighbors of the seed and occupy each one,
independently, with a probability p. Call the new parti-
cles the second generation. In the next time step sam-
ple the nearest neighbors of the second generation and
fill these sites independently with a probability p. (A
site which is a nearest neighbor of more than one
growth site still has only a probability p to be filled in a
given time step). Call the new particles the third gen-
eration. In the next time step, sample the nearest
neighbors of the third generation, filling them with a
probability p, etc. If a site is tested but not occupied in
the nth time step, it may be sampled later and occu-
pied at a later generation. The rules for this process
can easily be modified to produce either site- or bond-
percolation clusters. To produce site-percolation clus-
ters, we add the condition that sites which are not
filled are blocked and cannot be filled at a later time.
To produce bond-percolation clusters we modify our
rules so that if a site is a neighbor of more than one
growth site, it is filled with a probability which
depends, in an easily calculable way, on the number of
neighboring growth sites. It should also be pointed out
that this model is not the same as the Eden model in
which all perimeter sites stay active indefinitely. (If
we modify our model so that all perimeter sites are ac-
tive growth sites for all time, then we approach the
Eden model in the limit p 0.) In Fig. 1 we show the
results of computer simulations for this growth process
carried out to 250 generations for a range of values of
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FIG. 1. Clusters grown for 2SO generations according to
the algorithm presented in this paper (see text for fuller ex-
planation). (a) p = l, (b) p = 0.9, (c) p = 0.8, (d) p = 0.7,
(e) p = 0.6, and (f) p = 0.545. Note that with a fixed
number of generations the overall cluster size decreases with
decreasing p.

p. Notice that for p & 0.7 the shape consists of round-
ed corners with intervening straight facets. The facets
correspond to those points which are the maximum
possible number of lattice steps (i.e., N) from the ori-
gin of the cluster in a cluster grown for N generations.
The facets may also be defined as encompassing that
set of sites N steps away from the origin which have a
finite probability of occupation as N ~. As we shall
report in more detail elsewhere, the facets are smooth
in a technical sense, having statistical fluctuations of
order 1, independent of N. For p =1 the rounded
corners disappear and we have a perfect diamond. At
a value of p =pf =0.705 the straight facets disappear
and the object becomes (roughly) smoothly curved,
although still showing lattice anisotropies. Fluctua-
tions due to the finite value of p roughen the surface,
but an average over many clusters will produce an ob-
ject with a smooth unfaceted boundary. As we lower p
below pf, the boundary of the object becomes rougher
(although still on average smooth) and the density de-
creases. For p & p, =0.54, the bulk percolation
threshold for our process, the object does not grow ar-
bitrarily large, growing only to some (average) finite

size. A rough determination of p, was made by grow-
ing, for each p, 100 clusters starting at the center of a
600&&600 lattice and finding that value of p below
which no cluster reached the edge. A more precise
determination of p, can be obtained by finding that
value of p for which n (s), the number of clusters with
s particles in an ensemble of simulations, has the
power-law behavior n (s) —s' '.4 At p =p, the
growth is marginal and fractallike, with, we believe, a
Hausdorff dimension of less than 2. For all values of
p ~p„the growth is scale invariant. Objects grown
with a value of p & p, show no tendency to change
shape as the number of generations increases. 4

These results are typical of those obtained for a
variety of related growth models. Let us now try to
understand the general features of this kind of growth.
The two most striking qualitative features of the
growth are the behavior of the facets as a function of p
and the existence of marginal growth of the cluster at
p =p, . Let us discuss first the existence of apparently
well-defined facets for p )pf. Notice that for a cluster
grown up to N generations these facets are defined by
the equation ( i

~
+ ( m (

= N, where (i, m) is the coordi-
nate of a site on the lattice which is the greatest dis-
tance to which the crystal can grow after N steps. We
can study the facets in a little more detail, by rotating
our lattice by 45 and concentrating on a single qua-
drant. The leading-edge growth which determines the
facets now appears as a probabilistic cellular automaton
advancing up a triangular lattice. We start our growth
with a seed on the bottom layer of the triangular lat-
tice, and occupy the sites on the next layer according
to the rule that a site is occupied with probability p if
either or both of the neighboring sites one layer below
is occupied. Otherwise the site is unoccupied. We see
then that the clusters so generated are just connected
directed-percolation clusters which start from a point. ~

For p & p& there is apparently a finite probability that
such a directed-percolation cluster will grow arbitrarily
large, i.e., will make it up to the Nth level for arbi-
trarily large N. p =pf = 0.705 may therefore be identi-
fied with the threshold for directed percolation at
which directed percolation is marginal and the
directed-percolation clusters are fractal. Thus we see
that the morphological bifurcation signaled by the
disappearance of facets in our growth process is con-
trolled by the critical behavior of embedded directed-
percolation clusters.

For p ~ pf the facet can be characterized by 0, the
angle it subtends at the origin. Indeed, as p pf, this
angle approaches zero and behaves like i) —(p —pf )~,
where p is a critical exponent. In a simple random-
walk model for the growth of our cluster, to be
described below, p= —,'. A more detailed analysis of
the facet problem will be presented elsewhere. "

The second striking feature of the growth of the
cluster is the absence of arbitrarily large clusters for
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p & p, and the marginal, fractal nature of the cluster at
p =p, . The existence of marginal growth at some
value of p is a common feature of many probabilistic
growth models. In the specific model of Fig. 1,
p, = 0.54, and at that value of p the clusters appear to
be fractal with a Hausdorff dimension D ( 2.

It is interesting to compare the behavior of the
model shown in Fig. 1 with another related model. As
we stated earlier, we may easily modify the model of
Fig. 1 to obtain growth algorithms for site or bond per-
colation. Let us compare the results of the ordinary
site-percolation growth algorithm of Broadbent, Ham-
mersley, Leath, and Alexandrowicz described above
with the results of the model of Fig. 1. (Qualitatively
similar results are obtained if we study the version of
bond percolation described earlier. ) As a function of
p, this ordinary site-percolation growth model has mor-
phological features quite similar to the model of Fig. 1.
In particular, for large p there are facets which vanish
at some value of p, and at a still lower value of p the
growth becomes marginal and fractal. For example, a
cluster grown by use of the ordinary percolation
growth algorithm with p =0.8 has a shape virtually
identical to that of the cluster of Fig. 1(c), although
the cluster in Fig. 1(c) does have a higher overall den-
sity. Indeed, it is easy to demonstrate that the facets
disappear at the same value of p =pf = 0.705 in either
model. The ordinary percolation growth model also
becomes marginal, but this occurs at a value of
p =0.59, different from the value of p, for the model
of Fig. 1. It is not clear whether the Hausdorff dimen-
sion of the model of Fig. 1 at p =0.54 is the same as
the Hausdorff dimension of ordinary percolation at
p = 0.59. We have, however, calculated 7 for the
model of Fig. 1 and find a value for r that is very
close to the result for ordinary percolation8 of,=—e.es.

Whether or not the marginal-growth clusters in
these models turn out to be in the same universality
class, it is clear that the general morphology as a func-
tion of p is the same. These general features are evi-
dently quite robust and will appear in a wide range of
related growth models. In order to understand better
the origin of these results, we now introduce a simple

I

calculable model which may be thought of as a free-
field approximation to our growth models, and which
reproduces these general morphological features.

If we consider one of our generational growth
processes, for example, that of Fig. 1, we see that
there is an approximate correspondence between the
cluster pattern developed after N generations and a

weighted collection of all random walks on the lattice
of N steps. In particular, consider a random walk of a
maximum number of N steps that begins at the origin.
Each time a step is taken the walk is allowed to contin-
ue with a probability p, and terminate with a probabili-
ty 1 —p. The collection of the trails of all such in-

dependent random walks is an approximation to the
cluster grown in N generations. There are several
ways in which this random-walk model differs from
the real growth process. Among the most important
are the following related facts: (1) The nature of one
of the "walks" in the growth process is different from
a normal random walk since it involves aspects of
self-avoidance, as well as avoidance of other walks
proceeding simultaneously, and (2) the walks in the
growth process are not all independent. Walks which
coincide along some length of their paths do not occur
with independent probabilities. Despite these impor-
tant differences the random-walk model gives a good
qualitative description of the shape of our growth
processes, as we shall now show.

Consider a specific random walk that begins at the
origin of our square lattice and terminates in exactly N
steps on a site with coordinates (l, m). Since the walk
has a probability p to continue at each step, the proba-
bility that it does not fulfill its destiny of N steps is
given by 1 —p . Now consider all the possible random
walks of exactly N steps that begin at the origin and
end at site (l, m). What is the probability that at least
one such walk survives for N steps and terminates on
its target site (l, m) I Since the walks are all indepen-
dent, it is easy to see that this probability is just given
by

y 1 (1 p)v) z (tm;)v),

where R (l, m;N) is the number of walks that begin at
the origin and terminate at (l, m) in exactly N steps and
is given by

R (I,m;N) = (N!)'
[ 2 (N + I + m) ]![—,

' (N + I —m) ]![ 2 (N —I + m) ]![—,
' (N —I —m) ]!

Since we are interested in large N, I, and I, we can use Stirling's formula
ln(1 —p~) = —p, we have after a little algebra

9 = 1 —exp( —exp(N [lnp +f'(x,y) ]]),
where x = I/N, y = m/N, and

1+x+y 1+x+y 1+x—y 1+x —y 1 —x+y 1 —x+y

(2)

in (2) . Approximating

+ ln
1 —x —y 1 —x —y

2

(4)
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FIG. 2. Curves describing the shapes of clusters according
to the free-field theory of expression (5) in the text for vari-

ous values of p.

Now, physically, we must restrict ourselves to the re-
gion Ix I

+ ly I
~ 1 si~~e aft«N step~ I

l I + Itrt I

~ N.
Let us fix p and study the exponent in (3). If
lnp+ f(x,y) (0, then as N ~, P 0, and the
probability for that site to be occupied is zero. If
lnp+ f(x,y) ) 0, then as N ~, P 1, and we are
assured that the cluster will grow onto the site
(Nx, Ny) . Therefore, the expressions

lnp+ f(xy) =0,

Ix I+ IJ I
—I,

(5a)

(Sb)

determine the shape of the boundary of the growing
cluster. Plots of the boundary determined by Eqs. (5)
are shown in Fig. 2. For p = 1 we have the sharp cor-
nered diamond, consistent with our growth models.
As p drops from 1 the typical shape is that of rounded
corners with intervening straight facets. At p = —,

' the
facets disappear. The value of p should be compared
to p =pf ——0.705 in the growth model of Fig. 1. For
—,
' & p & —,', the cluster grows with a smooth, unfacet-

ed (but anisotropic) scale-invariant shape. For p ( —,
'

the cluster grows only to a finite size. This value of p
at which the growth is "marginal" should be compared
with p =p, =0.54 in the model of Fig. 1 (or p = 0.59
in the ordinary site-percolation model). Thus, the
qualitative features of our cluster growth models are
reproduced by this simple random-walk model.

The growth processes that we have studied here are
very natural candidates for describing a range of kinet-
ic physical and biological phenomena, and their mor-
phology is very rich and intriguing. There are many
very interesting questions raised by our study. One of

the most important is the question of how universal
the qualitative shapes of our clusters are. Given the
anisotropy of the underlying lattice, what class of
growth processes will give rise to clusters with a mor-
phology similar to the ones described here? The fact
that our simple random-walk model generates clusters
with such shapes suggests that the general morphologi-
cal behavior that we have observed here will transcend
many of the details of specific-generation growth
processes and will occur in a very large class of sys-
tems.

Other important questions include the connection of
the models studied here with other kinds of growth
models, as well as a more complete mathematical
theory describing the growth of our clusters. These is-
sues will be addressed in more detail elsewhere.
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