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Evidence for Anderson-Brinkman-Morel —Type State in a Heavy-Fermion
Superconductor from Ultrasonic Attenuation
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The ultrasonic attenuation for a superconductor with generalized pairing is calculated via a scalar
quasiparticle Boltzmann equation in the relaxation-time approximation, in the hydrodynamic limit.
The attenuation follows a power law as a function of temperature Tif the gap vanishes at points or
lines on the Fermi surface. With an Anderson-Brinkman-Morel —type excitation spectrum, a T2

behavior is obtained for the sound attenuation, which is consistent with the recently measured at-
tenuation for the heavy-fermion system Upt3.

PACS numbers: 74.30.Gn, 74.20.—z, 74.70.Rv

Ultrasonic attenuation measurements have tradition-
ally been used in the study of superconducting metals
to probe the nature of the gap. Recently, Bishop et al. '

have measured the attenuation of sound in UPt3, a
heavy-fermion superconductor, 2 and have found that
the normalized attenuation obeys a T power law,
where T is temperature. This result is inconsistent
with the predictions of conventional Bordeen-Cooper-
Schrieffer (BCS) theory with singlet pairing and iso-
tropic gap. Bishop et al. ' indicate that these measure-
ments can be explained by odd-parity triplet-pairing
superconductivity in UPt3. In this Letter, we show
that a p-wave triplet gap does yield a power law for the
attenuation as a function of temperature. In particu-
lar, we find that at low temperature T, gap states with
Anderson-Brinkman-Morel —type (ABM) excitation
spectrums give attenuation proportional to T, while
gap states with polarlike excitation spectra yield at-
tenuation proportional to T. The latter result is in con-
trast to the statement made by Bishop et al. ' that polar-
like states give T2 behavior in the attenuation.

There is strong evidence that the measurements on
UPt3 were performed in the hydrodynamic limit,
~~ (( 1, where ~ is the sound frequency and 7 is the
characteristic electron relaxation time. For example,
the attenuation has an t0 frequency dependence above
and below the critical temperature, and it varies rough-
ly as the electrical conductivity on the normal-metallic
side. ' We therefore assume that propagation of sound
in superconducting UPt3 is hydrodynamic. Ultrasonic
attenuation in the hydrodynamic limit is due to viscous
dissipation by conduction electrons, and to obtain it we
calculate the viscosity tensor for a superconductor with
generalized pairing.

In principle, the near-equilibrium physics of a super-
conductor can be described by a matrix generalization
of Landau's kinetic equation for normal Fermi
liquids. We assume, however, that the sound pertur-
bation leaves Bogoliubov quasiparticles well def'ined,
which requires that c0 (( ib, i, where b, is the gap
parameter (we assume "unitary" gap, Ab, ~ 1). Then

hf~"= (BfP/BE)(BEp —p v„), (3)

where v„ is the velocity of the "normal" flow, which
in a metal is equal to the velocity of the lattice. Note
that we have neglected temperature fluctuations and
have taken orb, ~i =0, which is a good approximation
within corrections of ib, i /e2F in the attenuation. We
are dealing with nonmagnetic phenomena and so have
dropped spin indices. Now, in the hydrodynamic limit
we let &f~ = &f~" and Bp, = &p,"= & n (Bp/B n ) 1,
=An(1+ Fp)/NF on the left side of Eq. (1). Then
with the help of the linearized continuity equation we

the matrix equation transforms into a scalar kinetic
equation for the variation of the distribution of Bogo-
liubov quasiparticles 5fp(r, t),

B(ofp)/Bt+vr~E~ V', [bf» —(Bf /BE)5E~]
= —sf, /~, . (1)

In Eq. (1), we approximate the collision integral by
the relaxation-time approximation. Here Bfp mea-
sures the deviation from local equilibrium4 of the
quasiparticle distribution; e~ = (p /2m') —p, and

E~ = (e~2+ iApi )'I are the normal and BCS quasiparti-
cle energies; and fP(E) = [1+exp(E/kBT)] ' is the
equilibrium distribution function at temperature T.
The change in quasiparticle energy is given by

5Ep= p v, + (e~/Ep) (fohn —Bp, ).
Here v, is the superfluid velocity, Sn is the change in
the density from the equilibrium density, n = kF3 /37r2

(kF is the Fermi wave vector), and Bp, is the variation
in the chemical potential. Fp= NFfp is the usual spin
symmetric Landau parameter, where NF= kFm'/7r h

is the density of states at the Fermi level (we have
neglected the Ft and higher contributions to oE~ be-
cause they do not contribute significantly to the viscos-
ity; in fact, neither will Fp). The quasiparticle mo-
rnenta p are measured with respect to mv„where m is
the band mass.

We now write the distribution at local equilibrium as
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obtain
f

6p5fp=7p vFpF
P,

f f

Bf lj ygPIPJ 3
~l J& (4)

where pF and vF are respectively the Fermi momentum and the Fermi velocity and p is the unit vector along p. In
the above expression for 5f~ we have dropped terms that yield superfluid viscosities. We now write the stress
tensor in the form m,"= vr ~' —o.;~, where m,~' is the local equilibrium part and where a-," is the dissipative part given
by6

a-,, = —(Qm,, /t)p, )„5P,—g, (p p, m' '+5;,fon)(e~/E~)5f~.

Here 5p, measures the deviation of the chemical potential from its local equilibrium value. Since the local values
of 5p, and 5f~ are chosen so that they give the correct local density and current, we require that the contribution
which 5f~ and 5P, make to 5n vanishes; i.e.,

(i)n/t)p, )i,5p, + X, (e~/Ep)5' =0, (6)

from which we obtain 5P, . We further write m,~'=-5;~P, where P is the pressure. Then by the Gibbs-Duhem rela-
tion (t)m;J/cip, )„=n5;J. After solving for 5P, from Eq. (6), substituting it, along with Eq. (4), into Eq. (5), and
replacing g~, by J(d0/4~) deaf in Eq. (5), we obtain for the viscosity tensor

q(kI = —3npF Ji de II, (p,p, —
3 5,, ) (p„p(—

3 5„,), (7)

= —
—, Jt 4

f'(I&, l) [1—3(p q)'1'.
n

(8)

Expressions similar to Eq. (8) in form have been ob-
tained previously by Combescot in the context of su-

where o.;, =q,jq&r)kvI" Here. l~—= (~e~~//E~)vF7~ is the
effective mean free path associated with the degrada-
tion of strain in the Fermi liquid of a quasiparticle of
momentum p. Note that expression (7) for the viscos-
ity tensor is independent of I'0.

The attenuation of sound with wave vector q and
polarization u (a unit vector) is given by
n= (q /pc, )g, with q=q;JkIu;j~qkul', p is the mass
density and c, is the speed of sound related to Fo by6

c, = (m"n/3p)vF(1+ Fo). Consider the case in which

l~ is given by a constant I. Then, for longitudinal po-
larizations, we obtain for the attenuation, normalized
to its value in the normal state,

perfluid 3He, but in the large Fo limit. 9 Above,
n„= —,', (q /pc, )pfl„n is the attenuation of longitudinal
sound in a normal metal. The assumption of a con-
stant mean free path is clearly valid for an isotropic
gap. However, though in general the mean free path l~

will vary as a function of the quasiparticle momentum
if the gap is anisotropic, Eq. (8) remains valid at low
temperatures compared to the critical temperature T„
for gaps with nodes on the Fermi surface. In that case,
the major contributions to the viscosity in expression
(7) come from the regions of momentum in the vicini-
ty of the nodes, and I is then the mean free path of
those low-lying excitations. Of course, we have impli-
citly assumed that the mean free path is finite at these
nodes, which is required in the limit of hydrodynamic
sound propagation, where in fact q/ (( 1. Evaluating
(8) for an isotropic gap, an ABM-like gap, and a polar-
like gap, we obtain the following results:

n/n„=2f'(&), for all T.

~A~~ =b (1 —p )'~ ' n /n = (57r /6)(l/l„)(kaT/6 )'+ O(T'),
n~ /n„= (5m 2/24) (l/l„) (k&T/Ao)2+ 0( T4), for T 0.

]a, ] =a(P, ]: „ / „=—,
' (i n)2(&/ )/( ,k/TS, ) +O( T),

n~/n„= —'„' (ln2) (1//„)(k&T/Ao) + O(T3), for T 0.

(9a)

(9b)

(9c)

The subscripts II and i denote, respectively, q along
and perpendicular to z. Notice that expression (8)
gives an infinite slope for (n/n„) ( T) at T„as long as
~A~~

—T, (l —T/T, )'~ for Tnear T, .

We see that the anisotropic gap states give power
laws for the normalized attenuation as a function of
temperature. In particular, the ABM-like gap

displayed in Eq. (9b) is consistent with the low tem-
perature T dependence of n/n„ in UPt3, as long as
the ratio l/l„ is finite and nonzero at T=0. The in-
clusion of momentum dependence in the mean free
path /~ only produces higher-order corrections, in
powers of T/T„ to results (9a)—(9c). A fit of the re-
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FIG. 1. The theoretical normalized attenuation vs nor-
malized temperature for ABM-like gap with compression
along axis of azimuthal symmetry. Also plotted are data for
attenuation in UPt3 at 508 MHz obtained from Bishop et al. ,
Ref. I (squares).

gap state that has an ABM-type excitation spectrum.
In fact the spin-orbit and crystal-field energies in UPt3
are strong, and therefore the gap parameter 5 &(k)
must transform as an irreducible representation of the
crystal symmetry, where real space and spin space are
rotated simultaneously because of the J symmetry. "
What this calculation does suggest is that supercon-
ducting UPt3 has a gap that vanishes at points on the
Fermi surface in a manner similar to the ABM state,
though the pairing may not be precisely ABM.
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cent data on UPt3 using this gap state in Eq. (8), with

q along z, over the entire temperature range appears in
Fig. 1. The temperature dependence of the gap has
been approximated by the following interpolation:

kB Tc ' 6 C Tc
b, (T) =b,ptanh m

p, , n

Here we have taken Ap/kBT, =2.9, the specific heat
jump as b, C/C„= 0.5, l/l„= 1, and have evaluated the
expression in Eq. (8) numerically. The fit is quite
good, except near T, . As mentioned before, our ex-
pression for the normalized attenuation as a function
of temperature does not yield the finite slope at T, that
is observed experimentally. It is possible that this ex-
cess attenuation near T, could be a result of collective
oscillations of the superconducting order parameter'
which we have not accounted for in this calculation.

In conclusion, we find good agreement with the re-
cent ultrasonic attenuation measurements on Upt3 if
we assume an ABM-type quasiparticle excitation spec-
trum. Here, we disagree with the statement made by
Bishop et al. ' that a T2 law for the attenuation below
T, is typical for a polarlike state. It should be borne in
mind that the ABM pairing is not the only generalized

~D. J. Bishop, C. M. Varma, B. Batlogg, E. Bucher,
Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 53, 1009 (1984).

2G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).
30. Betbeder-Matibet and P. Nozieres, Ann. Phys. (N.Y.)

51, 392 (1969).
4For a definition of the concept of local equilibrium, see

G. Baym and C. J. Pethick, in The Physics of Liquid and Solid
Helium Part II, edited by K. H. Bennemann and J. B. Ketter-
son (Wiley, New York, 1978), p. 1.

sl. M. Khalatnikov, An Introduction to the Theory of Super
fluidity (Benjamin, New York, 1965).

6Baym and Pethick, in Ref. 4.
This is a consequence of the fact that

on = g 8f» —tanh Ae»

for 8 ~5» ~

= 0, with a unitary equilibrium gap. Here 5e» mea-
sures the change in the normal quasiparticle energy with
respect to the chemical potential. See P. Wolfle, Prog. Low
Temp. Phys. 7a, 191 (1978).

8%e have neglected to include an additional term in the
sound attenuation arising from thermal conductivity. It is
small compared to the viscosity term for typical values of the
relevant parameters in heavy-fermion systems. See L. Lan-
dau and E. Lifshitz, Fluid Mechanics (Pergamon, New York,
1984) .

9R. Combescot, Phys. Rev. B 12, 4839 (1975).
~OWolfle, Ref. 7.
ttP. W. Anderson, Phys. Rev. B 30, 4000 (1984).

252


