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Quantum Monte Carlo Simulation of High-Field Electron Transport:
An Application to Silicon Dioxide
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A new approach to the Monte Carlo simulation of electron transport is presented. The Monte
Carlo technique is regarded as a stochastic evaluation of the Green's function expressed as a Feyn-
man path integral. By a proper weighting of the randomly generated trajectories, conventional
Monte Carlo simulations can be used to obtain the correct quantum solution. This technique is ap-
plied to silicon dioxide by employment of the scattering rates obtained from the Dyson equation,
thus extending the validity of the solution beyond the quasiclassical and perturbation approxima-
tions.

PACS numbers: 72.10.Bg, 72.20.Ht

The problem of electron transport in semiconduc-
tors and insulators is commonly tackled by the as-
sumption that the electrons interact only weakly with
the scatterers —phonons, impurities, valence or con-
duction electrons, etc.—so that first-order perturba-
tion theory can be employed to compute the scattering
rates. Moreover, in this weak-coupling limit the elec-
tron mean free path is large compared to the electron
wavelength, so that the collision processes can be
treated as independent, occurring instantaneously, and
the electrons become quasiclassical particles. These
approximations result in the Boltzmann transport
equation (BTE) and in the equivalent classical Monte
Carlo (CMC) simulation scheme2 which assigns defin-
ite positions and momenta to the electrons, as allowed
by classical mechanics.

The presence of very high fields and hot electrons in
the small devices of the present technology requires a
revision of the semiclassical picture associated with the
BTE. Several attempts have been already made in this
direction. Some particular problems, such as the cal-
culation of the mass3 and drift velocity~ of polarons in
polar insulators or the effect of the finite duration of
the collision processes, ~ 6 have been successfully treat-
ed. However, we are still missing a general technique
which enables us to treat at a full quantum level the
transport problem in realistic instances.

In this Letter we present a new technique which
goes beyond the semiclassical and perturbation limits
in computing the energy distribution and drift velocity
of hot electrons in nondegenerate semiconductors and
insulators. First, the scattering rates are obtained from
the direct solution of the Dyson equation —thus at all
orders in the perturbation series —as previously sug-
gested by Chang et al.7 Then these are used as input
in a quantum Monte Carlo (QMC) scheme which is
viewed as a sampling technique to evaluate stochasti-
cally the electron Green's function expressed as a
Feynman integral over paths, rather than as a simple
random generation of classical trajectories. The major
difference between the CMC and our QMC technique

consists in the weighting procedure for the various
electron paths: The CMC assigns unit weight to all
electron trajectories and adds them without interfer-
ence. On the contrary, the QMC assigns a phase to
every path and accounts for the interference of dif-
ferent trajectories ending with the same classical
parameters (energy, momentum, position, or time).
We exemplify this technique by considering the prob-
lem of high-field electron transport in Si02, which re-
cently has received significant attention. 9'0

To illustrate the technique, we shall deal, for simpli-
city, with independent, nondegenerate electrons which
interact with phonons —assumed to remain always at
thermal equilibrium —labeled by a branch (transverse
or longitudinal) and type (optical or acoustic) index A. .
We consider the Fourier-transformed electron Green's
function G(k, w) with the electron-phonon interaction
turned on, but in the absence of the external field.
With vertex corrections and renormalization of the
phonon propagator ignored, " G(k, w) can be evaluat-
ed from the Dyson equation':

G(k, w) = Go(k, w)/[1 —Go(k, w)X(k, w) ], (1)

X(k, w) = g J d k'i V„„,i (n„„.+ —,
' + —,')

z, +

x G(k', w +hem„'"'„,), (2)
where Go(k, w) = (w —wk+i5) ' (5 0+) is the
free-electron Green's function, X(k, w) is the proper
electron self-energy, w„ is the bare energy of an elec-
tron of wave vector k, V~t~i is the matrix element for
emission or absorption of a phonon of type X, wave
vector q, and energy tco~t"1, and n~t") is the phonon
Bose factor at lattice temperature T.

The integral equation for X can be solved iteratively.
In the weak-coupling limit X reduces to the usual
"golden rule" expression in terms of the first-order
scattering rate I/i&(k):

Re [X(k,wk) ] = 0, Im[X (k, wk) l = —t/2~i (k) . (3)

This can be employed as a zero-order iteration of

1985 The American Physical Society 2475



VOLUME 55, NUMBER 22 PHYSICAL REVIEW LETTERS 25 NOVEMBER 1985

Eq. (2).
Having obtained the self-energy X, we obtain the re-

normalized energy of the quasiparticle, ek, by solving
the equation' 6k= wk+X(k, ek), which gives the pole
of the Green's function closest to the real axis (quasi-
particle approximation). The renormalized energy ek
can be found even if Eq. (2) provides X(k, w) only on
the real axis, since we can use the analytic properties
of the self-energy'3 and the Cauchy theorem to obtain
X(k,z) on the entire complex plane. The total scatter-
ing rate is finally given by

I/r(k) = —(2/t)1m[X(k, ek) ]

= —(2/li )Im(e„) . (4)
As a final and major step, we have to consider the

electron Green's function in the presence of both
electron-phonon interaction and a uniform external
electric field F. Rather than following again the
Dyson-equation approach, we find it convenient to ex-
press the amplitude Gi;(r', r';r, t) for an electron at po-
sition r at time t to be found at r' at time t' as a sum
over all possible paths (r(r), k(r)) in phase space:

GF(r', t', r, t) = J p [r(~) ]g[k(~) ]eis(r', i';r i)iii

where the effective action S is given by

I (r', t')S(r', t', r, t) =
J

' dr [tk(r) r'(r) —e„t,&

—eF r( )]. (6)

Here the dot over a symbol denotes the time deriva-
tive, and e is the charge of the electron. This expres-
sion can be obtained from the procedure outlined, for
instance, by Abers and Lee, '4 within the quasiparticle
approximation. ' Notice that intracollisional field ef
fects 6 as well as all virtual and real phonon emission
and absorption processes entering ek are accounted for
by Eq. (5). Moreover, the complete quantum descrip-
tion of the system is implicit in the functional integral,
so that quantum reflections, quantum size effects, or
quantization in inversion layers (subbands) would be
correctly included in simulation of realistic devices
described by a nonuniform external potential.

The path integral given by Eq. (5) could be evaluat-
ed by techniques such as the simulated annealing, '
molecular dynamics, '7 or the Monte Carlo importance
sampling (the Metropolis algorithm'8). The last tech-
nique requires the random generation of a collection
of paths with distribution exp(ImS/t): The total time
interval t' —t is divided into smaller intervals, thus jus-
tifying the quasiparticle approximation in Eq. (6).
Only (real) classical trajectories and second-order devi-
ations away from them are assumed to contribute to
the amplitude of the electron wave function in each
elementary path. Then, the problem of generating the
paths can be solved by generation of configurations

Ik, t„) with distribution

jJ„l~y~(&„,y, k„)I 'exp[ImS"((k„, t„))/li], (7)

where 5" is the action evaluated along the classical
path of duration t„+q —t with initial wave vector k
and final wave vector k„f, b vM is the Van
Vleck —Morette normalization factor, ' while the r„'s
are fixed by the classical solution. Finally, the evalua-
tion of the functional integral can be performed by ad-
dition of the phases of the configurations so generated.

Viewed from this perspective, the CMC solution of
the BTE and the Monte Carlo importance sampling are
actually almost equivalent algorithms. The main
difference is that the CMC technique provides only an
approximate evaluation of the path integral given by
Eq. (5), as each path is assigned a probability of oc-
currence, rather than an amplitude, and paths are
generated according to the probability distribution
exp(21mS/ll ). In practice, this is done by approxima-
tion of the squared magnitude of the factors of Eq. (7)
with the golden-rule transition rates (thus considering
completed and independent collisions at zero field2'),
and by generation of a Markov chain which is
equivalent to the Chambers integral formulation of the
BTE. Finally, classical mechanics is used to extract
the physical information. For example, in order to
obtain the energy distribution of the particles, the
paths ending at r' with classical energy Re(ek)
= Re[QS"(r', t', r, t) /9t' ]are all counted with the same
unit weight, independent of their phases (in other
words, amplitudes are squared and later added, as re-
quired by the classical composition of probabilities).

The Monte Carlo scheme can be converted to a
quantum solution by the weighting of each stochasti-
cally generated path by its action, thus recovering the
correct stochastical evaluation of the Green's function.
In order to obtain the correct quantum energy distribu-
tion of the renormalized electrons, we generate piece-
wise classical trajectories with probability-amplitude
distribution exp[lmS(path)/li], as prescribed by Eq.
(7). Simultaneously, we evaluate the real part of
the action along each path, obtaining its phase
exp[i Re(S(path) )/ti ]. Finally, having defined small
energy intervals Awf;„,&, we consider all paths ending
with classical energy Re(ek) within a given interval,
add their phases, and square the absolute value of the
result, thus obtaining the correct quantum mechanical
probability for that particular final energy to occur. A
similar procedure can be employed for the average
drift time, yielding the drift velocity, or for any other
observable whose expectation value is desired. This
averaging procedure correctly accounts for the possi-
bility that different paths may destructively interfere
or be damped by the exponential of the action. The
price that we must pay is the need for a larger statistics
(a factor between 10 and 100 with respect to the
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CMC), as many paths per given energy interval are
needed to stabilize the oscillations of the phases.

We have applied the QMC technique to the problem
of high-field transport in SiOz. We have assumed
essentially the same types of interactions (Frohlich and
nonpolar) with longitudinal optical and acoustic pho-
nons as employed in our previous simulations. Two
major modifications have been introduced. (1) The
conduction band has been assumed to be spherical, but
nonparabolic, in order to reproduce the calculated den-
sity of states (DOS) characterized by a conduction
band peaked at about 3 and 7 eV above its bottom at
the I point. 22 We have taken for the electron effective
mass at this point one-half of the free-electron mass
and used a free-electron dispersion at energies above
10 eV. Notice that we include a minimum of the DOS
at about 9 eV which has been observed experimental-
ly. 23 This contrasts with the choice of a much higher
DOS made by Porod and Ferry. 'o (2) We have as-
sumed that at very high electron energy a rigid-ion ap-
proximation better represents the matrix element
for the nonpolar electron-phonon interaction. This
amounts to a decrease of the momentum-transfer
cross section of the ions as the conduction electron ac-
quires enough velocity to prevent the valence elec-
trons from following its motion adiabatically. This
behavior is observed in the collisions between elec-
trons and nonpolar molecules. 2~ The critical energy
that we have assumed for the transition between the
(isotropic scattering) umklapp-dominated and the (for-
ward scattering) rigid-ion response is 25 eV (Ref. 25).

We have solved the Dyson equation iteratively start-
ing from the first-order scattering rates. The assump-
tion of spherical bands allows us to convert the triple
integral in Eq. (2) into a single integral. Typically,
convergence was reached after about thirty iterations
with a relative numerical accuracy of 10 6. The
resulting scattering rate and energy shift are shown in
Fig. l.

The average electron energy as a function of the

ELECTRON ENERGY ( eV j

FIG. 1. Total electron-phonon scattering rate and energy
shift obtained from the Dyson equation. The golden-rule
scattering rate (dashed curve) is shown for comparison.
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external electric field obtained from our quantum
simulation is very close to the results of our previous
semiclassical simulations. 9 This will be discussed in
detail in a forthcoming publication. 26 The major
difference between quantum and semiclassical results
concerns the actual electron energy distribution. In
Fig. 2 we show the quantum and semiclassical (no
broadening) distributions at a field of 107 V/cm. A
comparison between the quantum distribution and the
experimental data of Brorson et al. 7 indicates that a
satisfactory agreement is now obtained not only in
terms of average energies, but also in terms of the dis-
tribution of electrons at the high energies at which
quantum effects must be included. In particular, the
results of the QMC technique differ from those ob-
tained from the CMC because of the two somewhat
competing effects: Firstly, the peak of the distribution
is shifted to lower energies, an effect already known to
be due to the collisional broadening. 9 to Secondly, the
high-energy tails are more pronounced, since the low-
energy paths —farther away from the stationary-action
trajectory —are most likely to interfere destructively.
This second effect is typical of the present QMC tech-
nique and can be attributed to both intracollisional
field effects and interference among partial waves in
multiple-collision events.

In conclusion, we have shown that the standard
Monte Carlo method can simulate quantum transport,
provided each stochastically generated path is properly
assigned its phase and quantum-mechanical statistical
weight. Thus quantum transport can be dealt with
while preserving the conceptual simplicity of the
Monte Carlo technique in the handling of realistic

FIG. 2. Electron energy distributions at a field of
107 V/cm obtained from the CMC (dashed line) and QMC
(solid line) simulations and from the experimental data of
Ref. 27 (dots). The simulations have been performed over
a distance of 60 nm (CMC) and 100 nm (QMC) of Si02 with
the scattering rates and band structure described in the text.
The minima of the distributions coincide with the minima of
the DOS employed in the simulation.
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scattering rates and band structures. We have con-
sidered the simple case of independent, first-quantized
electrons in a spherical band. Extensions to systems
involving multiband phenomena, second-quantized in-
teracting electrons, and off-equilibrium phonon popu-
lation, while straightforward in principle, require nu-
merical algorithms significantly "smarter" than those
that we have presented.

We would like to thank R. Car, M. C. Gutzwiller,
M. Parrinello, P. J. Price, L. S. Schulman, and F. Stern
for very valuable discussions.

~W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590
(1957).

2Carlo Jacoboni and Lino Reggiani, Rev. Mod. Phys. SS,
645 (1983).

3R. P. Feynman, Phys. Rev. 97, 660 (1955).
4K. K. Thornber and Richard P. Feynman, Phys. Rev. B

1, 4099 (1970).
~K. K. Thornber, Solid-State Electron. 21, 259 (1978).
6J. R. Barker, Solid-State Electron. 21, 267 (1978), and

references therein.
7Yia Chung Chang, D. Z Y. Ting, J. Y. Tang, and

K. Hess, Appl. Phys. Lett. 42, 76 (1983).
sR. P. Feynman and A. R. Hibbs, Ouantum Mechanics and

Path 1ntegrals (McGraw-Hill, New York, 1965).
9Massimo V. Fischetti, Phys. Rev. Lett. 53, 1755 (1984);

M. V. Fischetti, D. J. DiMaria, S. D. Brorson, T. N. Theis,
and J. R. Kirtley, Phys. Rev. B 31, 8124 (1985).

OW. Porod and D. K. Ferry, Phys. Rev. Lett. S4, 1189
(1985); W. Porod and D. K. Ferry, in Proceedings of the
Fourth International Conference on Hot Electrons,
Innsbruck, Austria, July 1985 (to be published).

~~Renormalization of the phonon lines can be ignored in

nondegenerate large —band-gap materials. The vertex cor-
rections are known to be negligible from Migdal's theorem
(A. B. Migdal, Zh. Eksp. Teor. Fiz. 34, 1438 (1958) [Sov.
Phys. JETP 7, 996 (1958)]] for the nonpolar interaction,
while the first Ward identity can be employed to estimate a
posteriori the error in the limit of small phonon wave vectors
and frequencies (error & 0.1 for Si02). Finally, in the limit
of large frequencies, the error vanishes.

V. M. Galitskii and A. B. Migdal, Zh. Eksp. Teor. Fiz. 34,
139 (1958) [Sov. Phys. JETP 7, 96 (1958)].

~3Migdal, Ref. 11.
t4E. S. Abers and B. W. Lee, Phys. Rep. C 9, I (1973).
~5It is thanks to the transformation of electrons to

quasiparticles —and to the fact that we force the phonons to
remain at thermal equilibrium —that the electrons are for-

mally decoupled from the lattice, so that the sum over the
lattice degrees of freedom factors out of Eq. (5). Without
this factorization, our statistical ignorance about the lattice
(impure) configurations would enter the problem via the in
fluence functional of Refs. 4 and 8. On the contrary, in Eq.
(5) only a sum over quantum mechanical amplitudes is in-
volved, dissipation entering the problem only via the Bose
factors occurring in the quasiparticle energy ek.

I 6S. Kirkpatrick, C. D. Gelatt, Jr. , and M. P. Vecchi, Sci-
ence 220, 671 (1983).

~ M. Parrinello and A. Rahman, J. Chem. Phys. 80, 860
(1984) .

&8N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller,
and E. Teller, J. Chem. Phys. 21, 1087 (1953).

~9The normalization factor

g2gcl
5 VM (k„f, k„)= (27rai ) det

(jk„f 9k~

1j2

can be obtained following Cecile Morette, Phys. Rev. 81,
848 (1951), by expanding the action to second order in k
around the classical value and performing the Gaussian in-
tegral over k. This integration takes care of the many phase
cancellations of nonclassical paths. The convergence of the
Metropolis algorithm based on piecewise classical paths,
rather than on the straight-line paths considered by Claude
Garrod, Rev. Mod. Phys. 38, 483 (1966), is greatly im-
proved. This approach resembles the "smart Monte Carlo"
method of P. J. Rossky, J. D. Doll, and H. L. Friedman, J.
Chem. Phys. 69, 4628 (1978).

z The possibility of considering probabilities rather than am-

plitudes to obtain the usual irreversible master and
Boltzmann equations depends profoundly on the weak-
coupling approximation (that is, weak-scattering and weak-
field limits in our case). This is clearly discussed by Leon
van Hove, Physica (Utrecht) 21, 517 (1955). Reference 1

shows that beyond first-order perturbation theory interfer-
ence effects must be introduced in the BTE. These are ac-
counted for by the phases of the paths in Eq. (5) and by the
self-energy corrections.

2tSanjoy K. Sarker, Phys. Rev. B 32, 743 (1985); A. P.
Jauho, Phys. Rev. B. 32, 2248 (1985).

22James R. Chelikowsky and M. Schluter, Phys. Rev. B 1S,
4020 (1977).

23F. J. Himpsel and D. Straub, to be published.
24J. M. Ziman, Principles of the Theory of Solids (Cambridge

Univ. Press, Cambridge, 1972).
2~N. F. Lane, Rev. Mod. Phys. 52, 29 (1980).
6D. J. DiMaria, M. V. Fischetti, E. Tierney, and S. D.

Brorson, to be published.
27S. D. Brorson, D. J. DiMaria, M. V. Fischetti, F. L.

Pesavento, P. M. Solomon, and D. W. Dong, J. Appl. Phys.
58, 1302 (1985).

2478


