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Dynamics of Semidilute Polymer Rods: An Alternative to Cages
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Brownian simulations of rods with variable diameter d show that the rotational friction constant
P„, is the same in the limit d 0 as for a probe rod in a system in which vicinal rods interact with
the probe but not with each other. This agreement seems to rule out cage models. A model based
on the rapid dissipation of cage forces accounts for the observed dependence of P„„on concentra-
tion c, length L, and d.

PACS numbers: 61.25.Hq, 05.60.+w, 36.20.Ey

Brownian simulations of semidilute polymer rods
were previously interpreted' on the basis of a modified
Doi-Edwards (DE) cage model. 2 Discrepancies be-
tween the observed dependence of P„, on c and L and
DE predictions were rationalized in part through an as-
sumed lack of ergodicity in the simulations and, by
implication, in experiments. However, ergodicity has
now been verified by a comparison between structural
statistics from Brownian and Monte Carlo equilibrium
simulations. Agreement was found with no observed
sensitivity to the Monte Carlo rules. Therefore, an al-
ternative dynamical model has been devised and sub-
jected to additional tests on rods with varying d, and
on systems with special interactions. Support for the
alternative model is reasonably strong. Conflict of the
data with any frozen-cage model seems unambiguous.

The basis for the revised model lies in two corijec-
tures that were inspired by the previous simulations'
and have now been confirmed. The first is the propor-
tionality of p„,—p„, to cL3 for very thin rods. pa, t is
the dilute-solution value. The deviations from this
proportionality that were observed' for large cL were
ascribed to effects of nonvanishing d, without direct
evidence. The new data on systems with varying d
confirm the interpretation for 24 ~ cL3 ~ 146. In
terms of the factorization of a rotational diffusion con-
stant into a mean square angular displacement 82 of a
rod within a "cage, " and a relaxation rate 1/7, 8 is in-
ferred to be proportional to 1/(cL3)'l2 for thin but
noncrossing rods. In contrast, the DE model of a
literal cage of nearest neighbors gives HnE~1/cL .
In the related language of viscoelastic response, '

P„,—Po„ factors into r times an elastic force constant
Eo m cL, while EDE cc (cL ) .

The second conjecture is that i8„,—p„, is strictly
determined by independent binary interactions
between a probe rod and each of its neighbors, for the
Brownian model in the small-d limit. This is a plausi-
ble molecular interpretation of the proportionality
between P„„—P„, and cL3 found for large cL3. How-
ever, it might be objected that the proportionality has
been verified only for large cL, and that independent
binary interactions must be restricted to small cL

where a different proportionality constant would be
found. A test of this objection by direct simulations
on systems with very small eL did not seem practical,
because P„,—P„„becoines too small to measure with
any significant precision as cL' decreases below about
10. Moreover, a direct test of the second conjecture is
possible. Simulations were performed on specially
modified systems in which the probe rod interacts with
all its neighbors, but the neighbors do not interact with
each other. The same proportionality constant is
found relating P„,—P„, to cL as applies to the fully
interacting system in the limit of vanishing d. In this
limit, therefore, secondary interactions of neighbors
with each other have no influerice on the relaxation of
the probe.

An understanding of these observations, especially
the second, must begin with a sharp distinction
between (1) the propinquity of neighbors to a probe
and (2) the torques exerted by neighbors on a probe.
The physical significance of the elastic torque con-
stants EaT and EnE can be understood as follows. An
externally forced, "instantaneous, " and small rotation
( ( HnE) of a probe to a new fixed orientation initiates
a perturbation in the system. The immediate neigh-
bors no longer have an equilibrium distributian with
respect to the probe, and a quasielastic free energy
proportional to %DE is stored in the "cage." [The
meaning of "instantaneous" will be refined in the dis-
cussion that follows Eq. (1).1 The instantaneous
torque on the probe is a derivative of the induced free
energy and is also proportional to KDE. One channel
which is available for the relaxation of elastic free en-
ergy is the DE mechanism of longitudinal diffusion,
and this is the only channel easily imagined for the de-
cay of propinquity in a system with large cL . Howev-
er, a much faster mechanism is available for the
short-time decay of torque. The elastic free energy,
initially concentrated in the few neighbors that make
up the "cage," can spread among a large set of neigh-
bors by a process of rotational diffusion in which a typ-
ical neighbor rotates by no more than (roughly) HnE
rad. The torque on the probe would initially decay
very rapidly by this process, along with the local elastic
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free-energy density. In the quantitative (but heuristic)
calculation developed below, it is assumed that the ini-
tial decay of elastic free-energy density is due to a rota-
tory diffusion process controlled by ppot. Interactions
between vicinal rods are presumed to have no effect
either to help or to hinder the equilibration of vicinal
rods with respect to the new position of the probe, in
the vanishing-d limit. The rotational decay of free-
energy density slows down only because the driving
force for the diffusion process is the gradient of free-
energy density, and this decreases in the course of
time. Eventually longitudinal diffusion takes over as
the fastest channel for the decay of torque as well as
propinquity, and the long-time decay rate I/~ is com-
puted just as in DE theory. However, the amplitude
factor Eo in this exponentially decaying component of
torque is much less than the initial DE value EDE.
The quantitative model of this effect will now be
developed.

As shown previously, ' the analysis is carried out in
terms of a viscoelastic response function E(t). The
motion of one end of the probe rod is described on a
spherical surface of radius L/2. Aside from the ran-
dom Langevin force, the deterministic force acting in
the tangent plane on an end bead is expressed as a fric-
tional part —P, v(t) (P, = 2') and a force due to in-
teractions with other rods:

pOO

F(t) = —p, u(t) —
J K(t')u(t —t') dt'. (1)

K(t) is approximated by K(t) = Kpexp( —Rt), where
E0 is an elastic force constant. The corresponding
coefficient connecting the torque and angular velocity
is designated K (t) =K(t)L /4. Likewise p,~= p,
x L /4. For quasisteady motion, rod-rod interactions
add ~KpT to the dilute-solution value pp„= p,r, where
v =R; i.e., P,o, = P~ +7Kp.

The alternative picture is introduced through a qual-
itative examination of K (t) vs t (see Fig. 1). K (0)
is the mean square torque on a rod (in units
KaT =1) and will approach infinity as the potentials
approach hard-core forms. Likewise the initial rate of
decay will become infinite, and K (t) should decay
rapidly along curve 1 until caging forces come into
play. Curve 2 illustrates the DE assumption that cag-
ing forces decay slowly, with a relaxation time propor-
tional to the residence time of a vicinal rod in the
neighborhood of the probe rod, i.e., to L /D ii, where
D [ is the longitudinal diffusion constant at c = 0. The
intercept EDE is the mean square torque produced by
the cage rather than by the instantaneously acting
hard-core forces. However, the DE assumption that
cage forces relax only by longitudinal diffusion is now
rejected with the observation that forces in dense
media can propagate through space by cooperative in-
teraction much more rapidly than the physical objects
that generate the forces. It is supposed that as the

probe rod rotates toward its immediate neighbors,
comparably small rotations of the neighbors nearly
suffice to equilibrate the neighbors with the new posi-
tion of the probe, and further, that this equilibration
procedes outward from the probe at substantially the
same rate as unhindered angular diffusion of the rods.
This rate is estimated as D„,/4, where 4 is the mag-
nitude of the angular rotation through which the
equilibration has propagated. The torque correlation
will therefore continue to decrease rapidly, say along
curve 3, until such time as 4 has increased sufficiently
that D„„/42 is comparable with the rate of cage break-
up through longitudinal diffusion. The latter rate is
D p /(fL ), where f is a parameter discussed below.
The matching of rates occurs at 4~ f; 4= f7r has
been used. Subsequent relaxation procedes along
curve 4, with rate 8 similar to that of curve 2, but with
intercept Kp ~ cL rather than the KnE~ (cL3)2, for
thin rods.

The detailed calculation is based on separate esti-
mates of ~(f) and Kp (f) and maximization of P„,
[or r (f')Kp (f) ], with respect to f. This asserts
minimum entropy production, in rough terms. A
more formal variation basis exists.

A conventional estimate is used for the relaxation
time r(f):

(f) = (Lf) '/2D '. (2)
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FIG. 1. Schematic illustration of the torque response
function K (t). The intercepts are HC [hard-core true
K (0) ], DE (Doi-Edwards KoE ), and AM (alternative-
model Kor ).

Thus longitudinal diffusion through the distance fL is
presumed to eliminate the contribution of a rod to the
elastic restoring force.

Kp is (T ). The torque T is calculated for the sem-
iequilibrated state discussed above, through the se-
quence T p(s) A [5(s) ] = kaTN(5(s) ). Here s
is a point on the surface of the probe, and d + 5(s) is
the distance of closest approach of a vicinal rod to the
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probe. N(5(s)) is the mean number of vicinal rods
whose axes intersect the domain between d and
d + 5(s), in the ensemble that describes a partial
equilibration over azimuthal angles within domains of
size 4(f) = for. p(s) is the pressure exerted on the
probe by vicinal rods, and is a functional derivative of
A with respect to dX(s) 5(s) at 5(s) =0; dX(s) is an
element of area. 3 is the free energy of the system in

the semiequilibrated state in which the azimuthal angle
of each neighbor is averaged over a domain of size
C (f). For fixed centers and polar angles of the neigh-
bors, the mean number of vicinal rods that intersect
any part of the shell of thickness 5(s) is

t [5(s)/r@]xq;5(R —R;)r dr dz dP, (3)

where q; is a random variable equal to 1 if the azimu-
thal angle of vicinal rod i lies in an interval 4 adjacent
to the probe, and 0 otherwise. The probability that the
vicinal rod lies in any interval of size 4 is f. It is im-

plied in Eq. (3), and useful in calculation of the neces-
sary functional derivative, that a one-to-one cor-
respondence exists between the position s on the sur-
face of a probe and the coordinates of a vicinal rod.
The latter are the cylindrical coordinates R= (r, z, @)
of an end bead, a polar-orientational angle, and an
azimuthal-angle interval of size 4. Specifically,
d 'dx(s) =dz d@ (for small d, there is a constant
90' difference between @ and the corresponding angle
of s). A complete averaging of Eq. (3) at this stage
gives known values for (p) and (N).

Calculation of T and ( Tz) gives

than the previous formula. '' Variational values of f
range between about 0.1 and 0.2 (f=0.22 at c =0).
p„,/p„, vs d is shown in Fig. 2 for systems with full in-

teractions between all rods, and for modified systems
in which the vicinal rods interact with a probe rod but
not with each other. The solid curves are the predic-
tions of Eqs. (2) and (4). If caging played a significant
role in the system with full interactions, the intercepts
at d = Q should lie well above the open circles. In real-
ity, it does not matter whether the vicinal rods are
prohibited from crossing through each other in the
limit d 0.

The effective hard-core diameters d are obtained
from the continuous potentials u (r) used in the simu-
lations' through u (d) = kBT for rods crossing at right
angles.

The "Brownian" simulations of Doi, Yamamoto,
and Kano" seem to confirm the DE theory, contrary
to this work. Probably, however, their algorithm fails
to describe Brownian motion because of the extremely
large time step that was used (200 to 40Q times larger
than in the present work). This made it necessary to
impose arbitrary rules governing "collisions" which in
effect extend the lifetime of cages. Ad hoc modifica-
tion of the present Brownian dymanics equations, in
attempted emulation of their procedures, gives similar-
ly large increases in the rotational friction constants at
high concentrations. The Frenkel and Maguire simula-
tions' of rods obeying Newtonian dynamics also con-
firmed DE scaling of p„„. However, their model
yields a divergence of D [[ at high concentrations. This
divergence, and perhaps other effects of elastic col-

Eo (f) = Q [cL /12m f]ln[(1 f)/f], —

Q = 1+ ,'7rcL d(1 ——2f) +. . . . (4)

Q includes the (modified) first few terms of the
osmotic virial expansion squared. Q gives an ad hoc
account of the effect of finite d on the pressure or
torque derived from (3) . The series can be derived
from the ensemble average used to calculate N, with
certain assumptions. Note that the direct interaction
between vicinal rods and the probe gives a neglected
d-dependent correction factor [1+0(d/L)] in KoT.

(1 —2f) in the virial series and (1 —f)/f in the loga-
rithm show the effect of suppression of rod ends due
to longitudinal diffusion. The suppression seems
reasonable. Without it, ( T ) would be infinite be-
cause azimuthal-angle preaveraging is ineffectual for
vicinal rods whose ends are near the probe. The f
in front of the logarithm results from the azimuthal-
angle restriction, which gives a factor f 2 in (T2)
from 1/42. This is partially compensated by the proba-
bility factor f that q; = 1.

The p„, derived from Eqs. (2) and (4) fit the simu-
lation data described previously, as well as values for
higher and lower c and varying d, somewhat better
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FIG. 2. Ratio p„„/p„, vs rod diameter d. Curves are
theoretical, Eqs. (2) and (4). Solid circles are simulation
results for rods with finite diameter d, and open circles are
results for the special system in which vicinal rods interact
with a probe with d = 0.4 but not with each other. Standard
deviations are ca. 5% of the ordinates for d ) 0, and
(5—10)% for d = 0.
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lisions, may limit the equilibration of 4 to very small
values, as hypothesized in DE theory. See the discus-
sion of Fig. 1.
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