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Induced Angular Momentum in (2+1)-Dimensional QED
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We show that in the presence of a magnetic flux tube, the ground state of Dirac fermions carries
a net angular momentum. We use a trace-identity analysis to calculate it. We find the induced an-

gular momentum, for a flux tube with one quantum of flux, to be fractionized to 8. This is the

first example of an induced external quantum number.

PACS numbers: 11.10.Ef

(2+ 1)-dimensional quantum electrodynamics has
come under some scrutiny in the past few years. It
was observed that, in contradistinction to its (3+1)-
dimensional analog, there exists an additional term
which can be appended to the usual Lagrangean, that
serves to give the gauge field a mass. ' This so-called
topological mass term, explicitly given by

W=
4

me"" A„B„A

although not manifestly gauge invariant, changes only
by a total divergence under a gauge transformation,
and hence its contribution to the action is gauge invari-
ant. Further it was shown that, in the presence of
Dirac fermions with mass K, the topological mass term
is automatically generated in the effective action for
the gauge fields, obtained by functional integration
over the fermions. The induced mass of the gauge
bosons is

m = (sgnK)/2vr.

Recently it has been proven that this result is exact;
there are no higher-order corrections. A consequence
of the induced topological mass term is that there ex-
ists a contribution to the induced fermionic current in
the ground state, for given background fields,

(j")= (py"p) = [(sgnK)/471]et" a„A

with a net induced charge

Q = J d x (j ) = —,
' (sgnK) (4/2rr).

Now, if we imagine adiabatically switching on a mag-
netic flux tube from the vacuum, the induced charge
can be calculated by integration of the charge flux
through the surface at infinity. However, during the
switching process, the time-varying magnetic field
necessarily induces an azimuthal electric field. It is
natural to ask whether the action of this electric field
on the induced charge can induce any angular momen-
tum.

We consider Dirac fermions interacting with a
cylindrically symmetric, static, background magnetic
flux tube. The fermionic Lagrangean is

WF ——p(x) [i y" (6 + IA „)—Kl p(x),

where p(x ) is a two-component complex spinor,
A„(x) is the U(1) gauge field, and 8„=—,

' (8 —8„).
An explicit representation of the gamma matrices is

1 0 0 1 0
0

0 —1' ~ —1 0' ~ i 0'
We work with A a(x) = 0, A, (x) = 0, and a rotationally
symmetric gauge field. That is, for any rotation R~,

R/A, (x„)= A, (R„'x,).
Because of this property, the fermionic action is invari-
ant under rotations. The corresponding conserved
quantum number, the angular momentum, is given by

M = Jr d'x y (x)e"(—ix, 8, + —,
' t'[y;, y, l)tlt(x)

= J/d'x y'(x) (L + S)y(x),
which is just the sum of the orbital and the spin angu-
lar momenta. We take the gauge field to have the
form

A, (x) = e,,x'f (r ),
where f(r ) is a function of the radial coordinate only.
When f(r) —1/r2, the magnetic field vanishes. We
assume that this is the case for r & R, and f (r ) can be
an arbitrary nonsingular function for r (R. Since the
gauge field is single valued, there is no compelling
reason to drop this requirement on the single-particle
wave functions. ~ Consequently the eigenvalues of the
single-particle angular momentum operator are in-
tegral.

We want to calculate the expectation value, (M), in
the fermionic Fock ground state for the given back-
ground. Formally, this is just the mode sum over the
Dirac sea of the expectation value of the single-particle
angular momentum operator in the single-particle en-
ergy levels. We renormalize this expression by vacu-
um subtraction, that is by subtracting at the gauge
fields set equal to zero. Define

W/(A, ) = Jtd x g p (x) (L + S)p~(x) ~o'.
E&0

Tentatively we want to identify M (A, ) with (M);
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conjugation, we simply define (M} by projection on
the charge-conjugation —even part of a wA'(A;). There-
fore we define

however, even though this is a once-subtracted ex-
pression, we must regulate it to render it well defined.
We will use point-splitting regularization. This can
destroy some of the transformation properties enjoyed
by the formal expression (M }. (M } is even under
charge conjugation and has a specific transformation
property under gauge transformations. The transfor-
mation property under gauge transformations can be
preserved by multiplication of any point-split expres-
sion by

{M}= —,
' [m(W, ) +m( —~, )],

and evaluate the right-hand side by (gauge covariant)
point-splitting regularization. The order in which we
perform these manipulations, projecting on the
charge-conjugation-even part and regularizing by

plitting, is of course immaterial. Since

E(x)l g =iy'qg(x)l~,

point s
exp iJ 3 dx~,

where x' and x" are the two split points. For charge
we get

(M }= ——,
'

JI d'x X (sgnE) y (x ) (L + S)q (x) l, ',
a11 E

which is like an angular-momentum —weighted spectral asymmetry. We will omit the vacuum subtraction from
now on. Then the regulated, point-split expression that we must analyze is

II

(M} = ——,
' d x lim exp i„A„dxI' g(sgnE)pz(x')is'~( , (x,'8' ——x;"8")+—, [y;, y ]}Q~(x"),

(

which is gauge covariant and charge-conjugation even. We only split points in the spatial hypersurface. Now we
express

gnE = (2'~)„d~E ~(E +

and use completeness of the wave functions to obtain

H(M} = ——,J) d x lim exp i Ji, 3; dx' —„des —,
' tr(x"

l
L +S, lx'},

x',x" x H +OP

where

H =,'[ , (e, +i~—,)+.] =0'+.y'

is the Hamiltonian, and now

L +S =i e"( —x, 8, + —,
'

[y, , y, ])
is the angular momentum operator. Then using

r

tr(x" l L+S,
z z

lx'} = tr(x"
l L+S, y

H, iK 0 1

H +o) H'+ ~w
lx'},

where

~2 K2+ ~2

we obtain

(M} = ——,
'

JI d x lim exp i J~ 3; dx' —
J des tr(x"

l L +S, y
t' x p 1

0 H'+I~
t

lx'}.

Now we use a trace identity, which can be proven by straightforward generalization of similar identities used in the
analysis of the axial anomaly, the index theorem of Callias, and fermion-number fractionization, to bring the
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right-hand side to a tractable form:

2 & iK f'x
(M) = ——,'J d x —

J d~ lim exp iJl, 3;dx'

fx'&

fx') + 2 tr (x"
f

L + S, p' „f x') .

The remaining is straightforward. The first term becomes a total divergence in the coincidence limit, which is in-
tegrated to the surface at infinity. Since A; —I/», we need only the first few terms in the perturbative expansion of
the Green's function The second term is like an anomaly term which can be evaluated exactly by use of the
short-distance structure of the Green s function. The last term does not contribute since all field-independent
terms are removed by the vacuum subtraction, and we use the relation x 5(x) = 0. In evaluating this expression
we must remember to include the contribution from the expansion of the gauge-invariance factor, that all charge-
conjugation —odd terms, that is terms odd in A, (x), vanish, and that all field-independent terms are irrelevant as
they are removed by the vacuum subtraction. We must evaluate

(M) = —,d x dt0 lim tr{i (Q" +&+/" +s)(G "'+ g (g —5)~G "'——'[g (g —5)']'G ' '}
477 0 ~ g 8 0

~here. 6 ' is the ith-order perturbative expansion of the Green's function

G (x + (,x + 5 ) = (x + ( ~ (L + S, (H + I o)) ~x.+ 5),
and where I have put x'=x+5 and x"=x+ g. The calculations are tedious and not illuminating; they will be
reserved for a lengthier, more detailed presentation. I find that the angular momentum density is finite and unam-
biguous, as is the total angular momentum. The expression for the angular momentum is

(M) = [(sgnK)/32m]~I d x {(5'"5'J+~ ~ +6 s"+5'"5")[B,(A, x„A,) + (t), 2, —t), A, )x„A, ]

+2(5'"5 —e'e" —e' e" ) (8 3;—t) 2 )x 3 + (5'"5 q'q" —q'Jq" —)t') (g.x g ))

Then replacing

we find that the first and last terms give vanishing con-
tribution while the second term gives

(M) = —,
' (sgnK) (4/2m)',

where

4= J d x r '[r f(r)1'= J d x B

is the total magnetic flux.
We observe that the result depends only on the total

flux which is a topological invariant. The result is
charge-conjugation even. This may seem counterin-
tuitive since one might expect the angular momentum
to behave like a magnetic dipole and change sign when
B —B. However, I remark that this is the angular
momentum of the induced charge, which is odd under
charge conjugation, rendering the angular momentum
even. Finally, if magnetic flux tubes are dynamically
stable, this would be the angular momentum induced

on the flux tube. Even if magnetic flux were quan-
tized in units of 2m (the usual flux quantum), the total
angular momentum induced by the fermions would be
fractional.
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