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A general expression for the response function is derived by the method of recurrence relations.
Memory effects appear as corrections to the dynamic random-phase-approximation form. The
dynamic structure for the three-dimensional electron gas is calculated to third order and compared
with Al data at a large wave vector. Also shown is the dynamic local-field term.
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The dynamic response in strongly interacting homo-
geneous many-fermion systems has drawn consider-
able attention recently. ' Let such a many-body system
be described by H= Ho+ V, where Ho represents the
kinetic energy and V the interaction energy, and the
response in the system by the response function
Xk(c0), where k and co are, respectively, wave vector
and frequency (ii=1). It is well known that the
response function may be put in the form

x„(co)= x„''(c0)/[I + A„(to)x„"&(to)],
where Xkto) (t0) is the response function due to Ho and
Ak(to) is some unknown function of V. Various
dynamic random-phase-approximation (RPA) theories
are equivalent to taking Ak(co) =Ak(0) —= Ak. For
example, A„=vk gives the simple RPA where vk is the
two-body interaction, and Ak=u„(1—Gk) gives the
generalized RPA where Gk is a local-field term effec-
tive over the Thomas-Fermi length 34 Th.ere are large
numbers of RPA-based studies and they have been
routinely used to interpret experiments.

The dynamic RPA's, however, can break down
especially in the regime of metallic densities at large
wave vectors. Clearly, one needs to restore the fre-
quency dependence, e.g. , &k(co) = ~k[1 —Gk(co) ].
Several people have obtained asymptotic conditions for
Gk(to). Otherwise, there are at present no exact
general expressions known. For a three-dimensional
(3D) Coulomb gas Devreese and Brosens~o and Holas
et al." have calculated Gk(to) by some approximate
techniques. Unfortunately, they find in their calcula-
tions several unphysical divergences. This sort of situ-
ation has limited our understanding of the dynamic
structure of metals at large wave vectors. In particular,
whether the observed fine structure arises from mul-
tipair excitations or from some other strong correla-
tions remains unresolved. In this Letter, we obtain a
general expression for Ak(to) by the method of re-

b,„~)a„+)(t)= —a„(t)+a„)(t),
where 0~v~ d —1, f„=i[Hf„],a„=da„/dt,
= (f„,f„)/(f„~,f„t), the inner product means the
Kubo scalar product, and by definition f t

= 0,
a ~

= 0, and 60= 1. According to the method of re-
currence relations, one obtains the basis vectors f„by
RRI [Eq. (2)] from which come the recurrants b,„.
One can then deduce the autocorrelation functions a„
by RRII [Eq. (3)] and obtain the time evolution of

13Pk.
If we choose f0= pk, then by linear response theory

ao(t) = (pk(t), pk)/(pk, pk), which is the relaxation
function, and b, qa~(t) = Xk(t)/Xk, where Xk = (pk,
p„).If v = 0 in (3), we get

(3)

a, a, (t) = —ao(t). (4a)

By applying the Laplace transform operator ~ and
with ao(t =0) = 1, we obtain

b, ~a~(z) = 1 —zao(z),

where a„(z)=+[a„(t)]. Hence, from (4b)

ao(z) = [z+b)b)(z)]

(4b)

(5)

where b, (z) = a~(z)/ao(z). Now combining (4b) and
(5) and using the identity A~a~(z) =X(z)/X,

currence relations'2 and perform exact dynamically
convergent calculations based on it. Our results are
compared with Al data.

The time evolution of the density fluctuation opera-
tor pk may be given an orthogonal expansion, viz. ,
pk(t) = $„:oa„(t)f„were {f„)forms a complete set
of basis vectors spanning the d-dimensional Hilbert
space of pk and the a„'sare autocorrelation functions.
There exist recurrence relations, RRI and RRII,
respectively, for the f'„'sand the a„'s:

f.+i =f.+~.f. (2)
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suppressing k dependence altogether, we get

x(z)/x = b ibi(z)/[z+ alibi(z) ]. (6)

Since Eq. (6) is valid for any Hermitian model, it also applies to Ho (ideal version). Now consider
6i= (fi fi)/(fo fo). Since fi= fo from (2), we have fi=i [H pk]=i[HO pk] = fii i.' Hence,

5,"'/b, , = x/x'".
We divide (6) by its ideal version and obtain

)/X ( ) = (lb ( )/b ( )]([ +A, b, ( )]/[ +dlIO~bioi ( )]))
=—[1+A(.)xtoi(, )]- . (8b)

A( ) = [x-' —(x'")-']+[ /(f, f )]([b ( )] ' —[b'"( )] ') —= A+«)
The first bracketed term, A, is z independent. Thus,
the RPA theories are valid, i.e. , A(z) = A, if and only
if b, (z) = b,"'(.).

We shall now examine the z-dependent part. Ear-
lier, bi(z) was introduced in place of ai(z)/ao(z).
According to the method of recurrence relations'2
there is actually a whole family of b„(t)

'[b„(z)],1~ v ~ d —1, which define the time
evolution of the generalized random force I'k for pk as
Fz(t) =g„"=Jb„(t)f„.The random force lies in a llm A n,
linear manifold of the Hilbert space of p„.The auto-
correlation functions b„sometimes referred to as the
memory functions, also satisfy a recurrence relation:

to calculate A(z) term-by-term up to the available or-
der of the recurrants given that the "ideal" recurrants
are known to all orders.

From (9) and (11) we see that

X = X(,'a„);(a„'");z),v «2, (12)

assuming d= ~. Hence, we can ~rite

(13)

where

x„=x(~, . . .~„~„",', . . .&„"',9,„"');z). (14)
The process of replacing A. by A. „hasthe following sig-
nificance: If A.

„

is used in place of A. in (9), the result-
ing X(z) satisfies the frequency-moment sum rules
exactly up to and including the (2n+ 1)st. It satisfies
the higher moments to the accuracy of the substitution
of 5 by 5 ioi, m «n+ 1.'6 By this process one can
obtain an expression for the response function in
terms of the recurrants which is exact to a given order.
One can continue this process to the highest available
recurrant. An infinite-order expression evidently is
equivalent to an exact expression for the response
function.

Using (9) and RRII, we can systematically obtain
~ni eg ~

S„„b„„(t)= —b„(t)+b„,(t), (10)

where bo(t) =0 and 1 ~ v ~ d —1. That is, for exam-
ple,

bi(t) = b, (b, 2 A3 . ~ ~ 5d i t)

Hence, if A„ah.ioi, 2 ~ v ~ d —1, memory effects due
to the interaction are always present in the response
function and are manifested through the z dependence
in A(z). i5

The recurrants 5„,which are relative norms of the
basis vectors, are model dependent. They are basic
elements of the dynamic structure and their form
shapes the time evolution. In some special physical re-
gimes of certain many-body models they can be calcu-
lated to any order and one can use them to obtain the
memory function from RRII, Eq. (10).'3 For nonin-
teracting systems, e.g. , an ideal 3D electron gas, the
recurrants are in effect known to all orders at T=Q
since Xktoi(z =ice) is analytically given in the ground
state. But for interacting systems generally, only the
first few orders of the recurrants have been accurately
calculated presently. Hence, one cannot obtain their
memory function by (1Q) and one cannot use the gen-
eral expression (9) to calculate explicitly, e.g. ,
Imx„(cu) for metal densities at large wave vectors.
We propose here a technique by which one can use (9)

x A. 2
= 7)2 g (Z ),

Xio~h, = [q —q R(z)]g(z)/[I+q3R(z)],
etc. , where

g (.) = Xt'&/x&'& (z) —"/~ t'& —I

R (z) = 1 —y g (z), y = b, , '/&'0'.

Observe that A. X~ gives the generalized RPA. For
k = kF, where kF is the Fermi vector, multipair excita-
tions exist which are contained in A2A3, etc. They can,

Observe that (8b) is in the form of (1). By using the ideal version of (6), we find from (8a) and (8b) the desired
expression'.
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FIG. 2. Dynamic local-field term vs frequency. Dotted
curve, first order; dash-dotted curve, second order; solid
curve, third order. eF, Fermi energy.
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FIG. 1. Dynamic structure vs frequency. (a) Dotted
curve, first order; dash-dotted curve, second order; solid
curve, third order. (b) Dashed curve, experimental; dotted
curve, simple RPA; solid curve, third order. ~F, Fermi ener-
gy.

therefore, contribute to the response function via fre-
quency dependence beyond first order. The conver-
gence of our term-by-term calculations should be rela-
tively rapid since our procedure uses infinite continued
fractions at all stages which are known to give good
convergence. ' Finite-order calculations are meaning-
ful if X( )(z)e0.

To illustrate our technique, we calculate the dynam-
ic structure factor Sk(co) = —m 'ImX(z = ito) for the
3D electron gas to third order, the highest order possi-
ble based on the presently available recurrants which
are Ath2b, 3. For our calculations we set k = 1.6kF and
r, =2.0 (cf. Al, r, =2.07). For these values we find
7l2

——0.1297, q3 = 0.0364, and y = 0.5619.
Shown in Fig. 1(a) is the first-order result corre-

sponding to the generalized RPA (dotted line). It
shows almost no fine structure. The second-order
(dash-dotted line) and the third-order (solid line)
results begin to show some structure. The calculated
amplitudes are all absolute. Observe that in our
finite-order calculations Sk(c0) =0 for co~ 5.76eF. 's
In Fig. 1(b) the third-order dynamic structure (solid

line) is compared with the simple RPA (dotted line)
and Al data (dashed line). '9 The experimental ampli-
tude is adjusted to coincide with our third-order calcu-
lated one. The simple-RPA —calculated amplitude is
absolute. We observe that the third-order calculated
structure factor shows some resemblance to the exper-
imental curve especially in the shoulder. The peak po-
sition is much closer to the experimental peak position
than that of the simple RPA. 20

Using the definition Ak(t0) = ttk[1 —Gk(to) ] one
can also extract the corresponding frequency-
dependent local-field term Gk(co). These results are
shown in Fig. 2. The first-order (dotted line) result is
absent in the ImGk(co) plot since Xt = 0. The second-
order (dash-dotted lines) and third-order (solid lines)
results are well behaved, containing no infinities. In
ReGk(c0) there are cusplike peaks at co=0.64e„and
5.76eF. It is interesting to note that Devreese and
Brosens' and Holas et al." encountered divergences
in their calculation of Gk(co) at these frequencies.
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