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Density Waves in High Magnetic Fields: A Metal-Insulator Transition
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The effect of high magnetic fields on the electronic structure of very anisotropic systems with
charge- or spin-density waves is examined. In materials where there is lack of perfect nesting at the
Fermi surface the density wave produces small electron and hole pockets. Calculations show that
the presence of a high magnetic field in certain directions destroys these pockets, opens a gap in the
electronic spectrum at the Fermi level, and leads to a metal-insulator transition. This effect has
been recently observed in the low-temperature charge-density-wave phase of NbSe3.

PACS numbers: 75.20.Ck, 71.45.Grn

Niobium triselenide is a very anisotropic solid, re-
garded as an example of a quasi-one-dimensional
(Q1D) system. Its monoclinic crystal structure, with
24 atoms in the primitive unit cell, consists of a set of
weakly coupled linear chains that run parallel to the b
axis. '2 The large anisotropy of the system is reflected
in its transport properties: The ratio of mobilities
along the b and c axes of the crystal is larger than 10.
There are two phase transitions3 in NbSe3 associated
with charge-density waves (CDW), at temperatures
Tt = 144 K and T2 = 59 K.

It has been shown recently that a high magnetic
field, applied perpendicular to the niobium chains, i.e.,
perpendicular to the b axis, couples strongly to the
static CDW structure of the low-temperature phase. 4

A large magnetoresistance (which rapidly decreases as
the temperature approaches T2) and an unusual Hall
effect show that (1) the observed behavior is not
caused by normal galvanomagnetic effects, and (2) the
high magnetic field causes a substantial decrease in the
number of carriers, i.e., a considerable obliteration of
the Fermi surface. Recently, the dependence of the
transport properties on magnetic field orientation has
been measured, and the results show that only the
component of the magnetic field perpendicular to the b
axis is responsible for these Fermi-surface effects,
which disappear when the field is parallel to the b axis.

In this contribution we show that a high magnetic

field can modify considerably the electronic structure
of a Q1D metal with a density wave (DW), either a
CDW or a spin-density wave (SDW). We conclude
that, because of the anisotropy of the system, small
electron and hole pockets can be destroyed by the ef-
fects of the magnetic field, resulting in a better effec-
tive nesting of the Fermi surface and in a semimetal-
semiconductor transition controlled by the strength
and the direction of the magnetic field.

Our ideas are related to the recent work of Gor'kov
and Lebed, 6 7 who studied the effects of magnetic
fields in Q1D systems with a nearly stable SDW
ground state: They have shown that in very aniso-
tropic metals the tendency to SOW formation is
enhanced by the application of an external magnetic
field. Heritier, Montambaux, and Lederers general-
ized the theory and included the magnetic field depen-
dence of the 0 vector of the SDW, and suggested that
in some systems a sequence of first-order transitions
could be observed as the magnetic field increases.
Friedel7 discussed these models in semiclassical terms,
valid only for weak magnetic fields, and argued that
the analysis should be valid for nearly stable CDW sys-
tems as well.

We consider the case of stable DW systems, even in
the absence of an applied magnetic field. We assume a
tetragonal lattice with constants aq (( a2= a3. The
one-electron energies in the tight-binding approxima-
tion in zero magnetic field are given by

e (k) = —2 t cos(k„at) —2t' [cos( k~a2) + cos(k, a3) ] —4t" cos(kya2)cos( k, a3) .

Here t and t' are the electron-transfer matrix elements
between nearest neighbors in the x direction and in the
(y, z) plane, respectively, and t" connects second-
nearest neighbors in the (y, z) plane. The Q1D charac-
ter of the system results in t )) t', t" We consider.
the case of one electron per site. The Fermi surface
has then two open sheets (corrugated planes) centered
at

k„= +m./(2at).
For t" = 0, the Fermi surface has perfect nesting and

! the system is unstable against the formation of a DW
with wave vector 0= (m/a&, 7r/a2, 7r/a3) The stable.
DW is either a CDW or a SDW, depending on whether
the electron-phonon or the electron-electron interac-
tion dominates. We characterize the DW by a gap or-
der parameter ~ Because of. the extra periodicity in-
duced in the system by the DW, the one-electron state
~k) is mixed with the state ~k+Q): The matrix ele-
ment of this mixing is ~, which we assume to be in-
dependent of k. The new quasiparticle energy spec-
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j'&&( &)s (2)

As in the perfect-nesting case, the DW induces a mix-
ing of the ~k) and ~k+Q) states, but the gap in the
spectrum is now given by 2b, g, where

1

7 —4t", if ~/t" & 4,

0, otherwise. (3)

In this case, and depending on the value of 7/t", we
have either a semiconductor or a semimetal.

When a magnetic field is applied, a new complica-
tion arises. The magnetic field H quantizes the elec-

trum has a gap 2r at the center of the band (the Fermi
level), and the system is therefore a semiconductor.

For t"&0 there is no longer perfect nesting of the
Fermi surface. If, however, t" is small enough, a DW
with the same wave vector Q is stable. We consider
the case in which

tron motion in the direction perpendicular to it, and
tends to form discrete levels or narrow bands. Prob-
lems involving Bloch electrons in a magnetic field
have been studied in detail. '0 '~ For small values of
the field, Onsager's quantization scheme applies, and
can be extended to the energy spectrum of a DW sys-
tem; this approach, however, completely neglects band
broadening" as well as any tunneling between bands.
This last effect is of great importance here since the
energy-gap parameter ~ may be of the same order of
magnitude or smaller than the magnetic energies bc', .
Under these conditions Onsager's scheme breaks
down. It is thus necessary to invoke other methods,
which permit the handling of the magnetic field and
the DW on the same footing: Harper's generalized
equations' are ideally suited.

If spin effects are neglected, the Hamiltonian in the
presence of a magnetic field in the z direction is given

6(n, kJ ) c„k cggk + T cos(nQ a)tc k cn(k ~ g ) t (c~k c( +1)k + c k c( l)k ), (4)
nk&o. nk j cr nk~o.

where kj (Q~) is a two-dimensional vector with components k~ and k, (Q~, Q, ). The index n refers to the atomic
planes perpendicular to the x direction, o- to the spin index, and the operator c„„creates an electron in the staten &cr

~
nk j a)of energ-y e (nk~) given by

6 ( nk~ ) = —2 [ t'+ 2t" cos(k, a3) ]cos(k~a2+ Pn ) —2t'cos(k, a3),

where

(5)

@= (~e ~Ha, a2)/(ac).

We have obtained the Hamiltonian (4) in the Landau
gauge.

It is clear from (4) and (5) that the magnetic field
induces a new periodicity in the system. '~ From the
point of view of the mathematics of the problem it is
necessary to distinguish between cases in which the
periodicities of the lattice and the magnetic field are
commensurable or incommesurable. However, as dis-
cussed in Refs. 11, 12, and 14, the physical properties
of the system are not sensitive to this difference.
Without loss of generality we thus consider only the
case of "rational" fields.

The energy spectrum of the Hamiltonian (4) con-
sists of a number of magnetic subbands, separated by
gaps. The quantity @, defined in (6), is proportional
to the number of flux quanta per two-dimensional lat-
tice unit cell (in the plane perpendicular to the direc-
tion of the magnetic field), and determines the fine
structure of the magnetic subbands. We are not in-
terested in this fine structure, and consider only values
of $ equal to (2m/X), where N is a large integer. '5

The proper scale to measure the magnetic field
strength is not @, the magnetic flux, but the magnetic
cyclotron energy

to), = (h ~e )H)/m'c,

with a cyclotron effective mass m' corresponding to
the bottom of the DW-state conduction band,

m = (h /2ata2) [7/t" (t —4t' )]'

We calculated the energy spectrum of the system by
means of the transfer matrix method. '2 Because of the
mixing of k„and k~+ Q~, our transfer matrix is of
dimension four. For high magnetic fields we obtain a
large gap at the Fermi level, in the center of the band.
This central gap 2b, g is approximately equal to 27,
even for values of 7/t" ( 4.

We have confirmed these results by a separate and
different calculation: We have determined the density
of states in the region of interest by a continuous-
fraction method. "'6 The density of states at the
center of the band resembles, except for details of the
fine structure, the density of states of a system with
perfect Fermi surface nesting.

The size of the central gap 2hg decreases monotoni-
cally as the magnetic field decreases. Numerical
results for a particular case are shown in Fig. 1, and
they can be summarized as follows: (A) If condition
(2) is satisfied, the size of the central gap b, g, mea-
sured in units of v, is sensitive only to the ratios
u=tru, /t" and 7/t". (B) For r/t" & 4, the ratio h~/v
is zero for n smaller than a critical value n, (which
depends on 7./t"), and grows continuously from zero
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FIG. 1. The value of the energy gap Ag in units of the
DW parameter ~ as a function of the magnetic field strength
H, expressed as the ratio of the cyclotron energy tee, to the
t" (departure from nesting) parameter. The lines corre-
spond to various ratios of ~ to t" (values indicated in the
graph) and for t = I and t'= 0.2. For the case of 7/t" = 2 we
have calculated values of t'=0. 1 (squares) and t'=0. 3 (tri-
angles). All curves exhibit a semimetallic region of zero
gap, and saturation of 4g to values of the order of 7.

at n =a„ to a value of the order of 1 for n )) 1. (C)
For 7/t" ) 4 there is a gap hg for n =0 [see Eq. (3)],
which increases monotonically as o. increases.

Because of the intricate fine structure of the spec-
trum, characteristic of Bloch electrons in a magnetic
field, small gaps could appear at the Fermi level even
for n & n, for some particular values of the magnetic
field. These are, in general, smaller gaps which disap-
pear as the field either increases or decreases in
strength, i.e. , they form "islands" of small-gap states
in general areas of semimetallicity. For discussion
purposes we use in what follows the terms semicon-
ductor and semimetal in a qualitative way: we refer
specifically to the situation n ) n, and a & a„respec-
tively.

In Fig. 2 we present a diagram of constant energy-
gap parameter b,s/r in the (n, r/t" plane. For
r/t" & 4 there is a two-dimensional region of the plane
corresponding to the semimetallic regime, Ag =0. The
high-magnetic-field region is semiconducting, with the
energy-gap parameter increasing monotonically along
both axes.

A few other points deserve comment:
(i) The order parameter i must be calculated self-

consistently, and in principle should depend on the
direction and strength of the magnetic field. The
equilibrium value of r is given by

~=)i X cos(no„at)(c k, c„(„,+0, ) ),
nk~o.

where A. is an interaction parameter, and ( ) indi-
cates the thermodynamic average. According to the
densities of states calculated for high magnetic fields,

0
0 8

flc & /t"
12 16

FIG. 2. The values of b g/~ as a function of magnetic field
tee, /t" and 7/t'" for t'/t = 0.2 and for t"« t' The sh.aded
region corresponds to Ag = 0 and band overlap, the semime-
tallic case. The gap increases rapidly to its maximum value
of Ag=7-.

we expect v to increase with field up to values of the
order of those obtained for a perfectly nesting Fermi
surface. We thus expect the effect of the magnetic
field to be even more pronounced.

(ii) Because of the nature of the electronic states at
the Fermi level, which in the absence of a DW form a
continuum even for finite magnetic fields, "we do not
expect the thermodynamics of the system to change
appreciably. If the DW critical temperature at zero
magnetic field is not too low, it will not be sensitive to
the application of any reasonable magnetic field, espe-
cially if lifetime effects play any role.

(iii) As pointed out in Ref. 8, for some particular
values of the magnetic fields and the band parameters,
the system could lower its energy by shifting the Q
vector, i.e. , by changing the periodicity of the DW.
This magnetic-field —induced transition may occur in
the semimetallic regime. In the case of a CDW other
contributions to the total energy, which tend to lock in
the Q vector, may however oppose this transition. '7 's

(iv) The results reported here are not a consequence
of a half-filled band. Similar results appear (albeit
with a different Q vector) for other electron concen-
trations.

In conclusion, we have shown that a high magnetic
field may induce a metal-insulator transition in Q1D
systems with a DW arising from an imperfectly nested
Fermi surface. Our theory provides a plausible ex-
planation for the anomalies observed in NbSe3 at high
fields. Because of the large number of atoms in the
primitive unit cell, the Fermi surface of NbSe3 consists
of several corrugated surfaces, each one generally
speaking associated with one chain and one band. Ac-
cording to band-structure calculations, ' the normal-
state Fermi surface consists of several open sheets
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(corrugated planes), and an inner multiply connected
surface. At the low-temperature transition T2, the
CDW removes parts of one of the open sheets, prob-
ably leaving some electron and hole small pockets. A
high magnetic field may shrink considerably or even
completely obliterate these small pieces. The residual
conductivity4 s and de Haas —Shubnikov oscilla-
tions2o 2' at very high fields may then be associated
with either the inner, multiply connected Fermi sur-
face, and/or with the leftover parts of the open sur-
face, which must exist before a real gap opens up at
high fields.

The effect described here does not occur for fields
perpendicular to the "corrugated plane" of the Fermi
surface, in agreement once again with the experimen-
tal results.
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