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Interfacial tensions o in the tricritical region of mixtures of ethane with higher alkanes were mea-
sured by surface light scattering. At each of the two critical end points o for the noncritical inter-
face shows the predicted behavior: o and do/dT appear continuous while d?a/dT? changes sign.
Results for the ay interface suggest high adsorption. The tricritical exponent for o varies across
the three-phase region and appropriate ratios of o do not approach unity, in disagreement with a

van der Waals—type theory of interfaces.
PACS numbers: 64.60.Kw, 64.60.Fr, 68.10.Cr

In this Letter we describe an experimental test of re-
cent theoretical predictions concerning the behavior of
the interfacial tensions o of fluid mixtures in the vi-
cinity of a tricritical point. Our measurements of o
across critical and noncritical boundaries between two-
and three-phase regions are in good agreement with
theory. The situation concerning the behavior in a
direction towards the tricritical point is less clear, how-
ever, and a number of discrepancies between theory
and experiment are evident, the most notable of which
is an asymmetry that seems to persist as the tricritical
point is approached.

In fluid mixtures tricritical phenomena are associat-
ed with regions of three-phase coexistence bounded by
critical end points. At one end point two of the
phases, say « and B, become identical in the presence
of the v phase, while at the other end point 8 and vy
become identical in the presence of «.

We will assume, as observed in our system, that 8
perfectly wets the a«y interface and therefore
Oay=0ag+ g, Widom' has used the one-density
square-gradient theory of interfaces to study the
behavior of o along a path of changing temperature
and fixed composition through a critical end point with
the result that, for the noncritical interface,

O=0cpta(T—Te,) +b(T =T ) +. .., (1)

where T — T, is the difference in temperature from
its value at the critical end point (cep) and u=1.26 is
the surface-tension critical exponent. The coefficient
a is found to be the same in the two- and three-phase
regions, implying a common tangency at T, of o,
and o,g in the three-phase region with o4 g, in the
two-phase region (and of o, and og, With o4, at
the other critical end point); b changes magnitude and
sign at Tep.

Robert and Tavan? have proved that for such a path
o and do/dT obtained from the square-gradient
theory are continuous at a cep for any number of
phases and densities and Telo da Gama, Evans, and
Hadjiagapiou® reached similar conclusions from nu-
merical calculations on a two-density theory that was
not based on the square-gradient approximation. Re-
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cently Lazenby and Rudnick* have obtained (1) from a
renormalization-group calculation. Previous experi-
mental studies,” however, have proved much less con-
clusive, but our new results lend strong support to (1).

We consider next a path with changing temperature
from the ay two-phase region into the three-phase re-
gion along which 8 appears as a bulk phase via a first-
order transition. Cahn® has given a rather general
treatment of this situation in which « or v may equally
well be solid. For our purpose his important con-
clusion is that when o,,=0,5+0g, holds in the
three-phase region, the avy interface in the two-phase
region is structured to consist of a microscopic layer of
B whose thickness diverges as In|T — T|, where T, is
the temperature at the boundary of the three-phase re-
gion where 8 becomes a stable bulk phase. The result-
ing logarithmic divergence in the adsorption implies a
logarithmic divergence in d o/dT at fixed composition.
Our results are in qualitative agreement with this pre-
viously unverified prediction.

Ternary mixtures of ethane with normal hydrocar-
bons in the C;4—C,( range have limited three-phase re-
gions at temperatures and pressures close to the critical
point of ethane. The mixtures are quasibinary’~?; that
is, to a good approximation they can be treated as a
binary mixture of ethane with a solute characterized by
the mole-fraction-average carbon number (n) of the
higher-molecular-weight alkanes. The width of the
three-phase region, as measured by the difference of
the upper and lower critical-end-point temperatures
AT=Tyep,— Ticep, vanishes at the tricritical point
and obeys the asymptotic scaling AT~ (An)¥?2
= ((n) —n,)¥?, with n, close to 17.6. Thus, the ap-
proach to the tricritical point can be investigated by
studying mixtures with different values of (n). For a
given mixture the three-phase region can be traversed
by simply changing the temperature and, depending on
the proportion of ethane, the transition to a two-phase
region can occur either by the merging of two phases
at a critical end point or by the disappearance of one
phase. Since we determine AT with greater precision
than An we use (AT)Y3 as our measure of the dis-
tance from the tricritical point.
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The quasibinary system ethane + (n-octadecane + n-
nonadecane) was chosen for this study because the in-
terfacial tensions are sufficiently large to be measured
with high precision by analyzing the spectrum of light
scattered from thermal capillary waves.!®12 Light
(A=632.8 nm) incident on an interface at close to the
critical angle was scattered and mixed with a local os-
cillator provided by a diffraction grating!? positioned in
the beam and imaged onto the interface with a lens
system. The correlation functions were fitted with the
numerical Fourier transform of the (broadened)
theoretical power spectrum!! with an appropriate
dispersion relation.!> We determine the quantity
o+ gAp/q?, where gis the acceleration of gravity, Ap
is the difference of the mass densities of the two bulk
phases, and ¢ is the scattering vector. Under the con-
ditions of large q used, the gravitational term is usually
small. The analysis requires knowledge of the densi-
ties of both bulk phases, but is much more sensitive to
the sum than to the difference. The densities in the
three-phase region are known3; along paths into two-
phase region we used the values at the phase boun-
dary.

Figure 1 shows our results for the binary system
with (n) =18 for which AT =0.166 K. The measure-
ments along the lines 4 and B, which were obtained on
samples in which the ethane content was carefully ad-
justed to make the meniscus appear at the center of
the critical phase, suggest that do/dT is indeed con-
tinuous at the cep’s. However, a discontinuity
develops quickly when the density is slightly off criti-
cal. Measurements made on samples with 7, im-
percpetibly different from T, but where the men-
iscus vanished above or below the center of the critical
phase, showed definite discontinuities in d o/dT while
that in o itself (proportional to |7, — T;|*) was un-
detectable.

Since each interfacial tension is required to vanish at
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FIG. 1. Interfacial tensions for {(n) =18. Lines 4 and B
result from the fitting of the data for o,g and og,, respec-
tively, by Eq. (2); their sum in the three-phase region is oay.
Other lines are simply to guide the eye.

its respective critical point as |7 — T.|*, we have
analyzed our results not in terms of (1) but rather with

o=CI|T—T,[F[1+A(T = Tepp) + BIT — Teepl#1,
(2)

where 4, B, and C are constants (for fixed (n)) and
as before u=1.26. The curvature in the three-phase
region is dominated by the vanishing of o and thus the
fits in Fig. 1 correspond to (2) with B=0 in the
three-phase region; allowing a nonzero B there had lit-
tle effect. Recently Lazenby and Rudnick* have found
that inclusion of a capillary-wave contribution in their
renormalization-group calculation of o gives rise to a
| T — Tceplﬂ term (8=0.32) in the three-phase region
and a concomitant infinity in d o/dT at Ty, our mea-
surements suggest that if this term is present its ampli-
tude is small.

We turn now to the interfacial tensions in the avy
two-phase region for three off-critical loadings (curves
C, D, and E). In each of these samples the bulk 8
phase appears (T =T,) as a thin (—~0.3 mm) layer
when the temperature is either increased (C) or de-
creased (D and E) and grows quickly when the tem-
perature is changed further. 7, was determined for
each curve and since o,,= 0,5+ 04, We can obtain
o,y at the phase boundary from curves 4 and B.
While values of 7, proved more difficult to determine
than T, they were reproducible to +1 mK, and so
we are convinced that the observed increasing and
probably infinite slope is real.

As T, was approached from the two-phase side we
found a small but systematic worsening of the fits to
the measured correlation functions; we believe this to
be due to the diverging thickness of the adsorbed B-
like layer. To examine this further we made similar
measurments on the C,+C;9 system, which has a
larger AT (=1.292 K). The interfacial tensions o,g
and og, can then be sufficiently different to give two
well-separated peaks in the power spectrum when 8 is
present as a thin but visible layer. As 7, was ap-
proached from the two-phase side we observed in addi-
tion to a signal at high frequency, corresponding to the
relatively large o,, = 0,g, a strong overdamped signal
that moved out to higher frequencies and eventually
corresponded to og, above T;. While we have ob-
served these features as far as 15 mK from T, the first
appearance of the 8 phase was more difficult to deter-
mine than in the (n) =18 system; because AT is
larger the volume of this phase grows more slowly
with temperature. We estimate an uncertainty in T, of
+5 mK here, and so we can conclude only that our
results are suggestive of a microscopic B-like phase in
the bulk two-phase region.

We have made measurements of o,5 and o, in the
three-phase regions of four samples with (n) between
18 and 19. In all cases we obtain excellent fits to the
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TABLE 1. Parameters for Eq. (2) (with B =0) obtained
from fits to data from the three-phase region. The constants
C, A, and B have units appropriate to o in millinewtons per
meter and 7 in kelvins.

TABLE II. Ratios referred to in the text. r; and r, refer
to Eq. (5) with the susceptibilities measured by the scattered
intensity or the square.of the correlation length, respective-
ly, from Kumar ef al. (Ref. 20).

(n) AT (mK) Cas Aap Cgy Ag, gap(8=—1) At =0
(n) opy(0=1) Oapl o ay r re

19 1292 0.0750(7) —0.16(1) 0.0600(6) 0.21(2)

18.835 1106  0.0753(8) —0.20(2) 0.0596(4) 0.26(1) 19 1.21(2) 1.31(3) 2.202)

18.391 545  0.0772(6) —0.39(4) 0.0643(8) 0.60(6) 18.8354 1.28(2) 1.33(3)
18 166  0.076(2) —2.5(3) 0.0621(9) 4.1(2) 18.3905 1.22(3) 1.31(5)
182 166  0.0753(5) —2.5(2) 0.0603(5) 3.8(1) 18.1761 2.2(2) 1.5(8)

18 1.25(4) 1.46(8) 1.7(1) 1.3(2)

AFits for this line include two-phase data for o, with B 17.8752 2.0(2) 1.5(3)
= —5.1(3) and two-phase data for og, with B= —7.0(3). 17.7648 2.1(2) 1.6(3)

data using (2) with B=0 and the parameters given in Table I. However, we see a number of discrepancies
between our measurements and a classical theory of the tricritical region and we therefore summarize some of the
pertinent features of such a treatment.

Lang, Lim, and Widom'* have used the one-density square-gradient theory of interfaces to obtain the interfacial
tensions near a tricritical point. Their calculation is based on a sixth-order polynomial for the free energy,!® the
simplest expression that yields tricritical behavior. We have recently shown!® that this asymptotic expression for
the free energy does not account adequately for the observed thermodynamic properties of a number of systems
and that higher-order terms must be included. Thus we have extended the theory of Lang, Lim, and Widom by

using an eighth-order polynomiall’; the result is

oap=12(0)(AL?—Jh (8) (AL >+ Kg(6) (AL —. .

., (3a)

ogy=1g (= 0)(AD?+Jh (= 0) (A2 +Kg(—0) (AL . ., (3b)

where I, J, and K are constants, g(8) and 4 (6) are
functions, and A¢ is the difference in a field variable ¢
from its value at the tricritical point. [In our quasi-
binary systems A is approximately proportional to An
or to T,— T, where T,, = (Tycep+ Teep)/2 is the mid-
temperature of the three-phase region.] The variable
6=2(T—T,)/AT shows the relative position in the
three-phase region and ranges from —1 at the Icep to
+1 at the ucep. [For J=K =0, (3) reduces to equa-
tions that are equivalent to those of Lang, Lim, and
Widom.] Thus, for fixed 0, o — (A{)? asymptotically
and therefore the tricritical exponent u,=2, a result
previously derived'® and confirmed by experiment!®
for the special case of *He +*He, a symmetrical (i.e.,
0 =0) tricritical system.

A feature of the original theory is the equality of
04p(0) and o4, (—6), a symmetry shown only asymp-
totically by (3). Lang, Lim, and Widom found their
data on a quaternary three-phase system to be ‘‘in
qualitative accord’ with their asymptotic theory.
Equation (3) implies that

0ap(80)/ g, (—0) — 1~ (An)2~ (AT)'3.

Table II shows values of o,g(8)/0g,(—8) obtained
from our data; they show no sign of approaching unity
while (AT)Y3 changes by a factor of 2. Indeed, within
experimental error there is no dependence upon AT at
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all.

At each fixed value of # we have examined the
dependence of o,g and o5, on A{= AN measured by
(AT)¥3. Classical theory, i.e. (3), predicts that in the
asymptotic limit the slope s obtained from log-log plots
of o vs AT should be $u,=%. However, we find
that, for each interface, s shows a systematic depen-
dence upon 6, rising monotonically from a value near
1.26 at the noncritical interface near the cep (= +1)
to around 1.4 near the other cep (= F 1, where this
interface becomes critical); there is increasing curva-
ture as the effective slope increases. These apparent
increases as one goes from one cep to the other are
largely a result of the o’s at {(n) =18, and so we plan
to investigate this effect with further experiments.

These results for the slope s are already evident in
our fits with (2). If the identities T— T, =AT (6 + 1)/
2and T — T, =AT (8 F1)/2 are substituted into (2),
with B =0, one obtains

o=CAT* (6 £1)/2|*[1+(4/2)(AT)(6 F1D].
(4)

For o to satisfy the proper tricritical scaling and be
asymptotically proportional to (A7)%3, C should be
proportional to (AT)¥3~#=(AT)%7 while 4 should
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be proportional to (A7) ™! or to a less negative power
of AT. Table I shows the AT dependence of the fitted
parameters, both C’s are remarkably constant and
both A’s are roughly proportional to (AT)~1'3 If
these features are incorporated into (4) and
s =(91no/91nAT), determined, we get the same vari-
ation with @ seen in the log-log plots. We anticipate
that a consistent nonclassical theory of critical-
tricritical crossover may show differences between
paths at different constant 6’s. [An aspect of this
crossover that arises even in a classical theory is clearly
seen in our results: o on paths of constant =7 — T,
(7 is rougly proportional to the a; of Griffiths!®)
exhibits effective exponents that change smoothly
from u, for 7=0 (the only path that passes through
the tricritical point) towards w as |7| increases.]

It is possible that the discrepancies between our in-
terfacial tensions and theory, notably the constant
asymmetry implied by the ratios in Table II, reflect a
breakdown of the square-gradient and/or the one-
density approximations made in obtaining (3). We
think that this is unlikely, particularly in view of the
success of (1), since these approximations are expect-
ed to be reliable near a tricritical point,2! the former as
a result of the necessarily thick interfaces near critical
points and the latter as a result of the asymptotically
linear three-phase region in a space of densities.

Ramos-Gomez?? has pointed out that a consequence
of the asymptotic form of the free energy, that is, of
the (AZ)? term in (3), is the relation

Tapl opy= (Xa ' =X D/ OG T =xg D =r, )

where X; is the susceptibility in phase /. In an extend-
ed classical treatment with higher-order terms in the
free energy, such as gave (3), (5) is valid only in the
asymptotic limit, but both ratios should approach the
same value as (AT)Y3 decreases. The right-hand ratio
r in (5) is accessible experimentally if one approxi-
mates the susceptibilities X; either by the intensities of
light scattering I, from the bulk phases or by the
squares of the correlation lengths ¢, Table II com-
pares, at the mid temperature 7,, (6=0), o,s/0p,
with r; and r,, taken from the experiments of Kumar
et al.?® Equation (5) predicts that for §=0 r; and r,
should approach unity as (AT)Y3, a prediction
equivalent to that of (3) for o,4/0p,. Again this pre-
diction is not borne out by experiment; each ratio is
virtually constant.

Evidently this fundamental asymmetry extends to
the susceptibilities in the bulk phases. We see no
direct relation between this unexplained asymmetry
and the nonclassical amplitude corrections?® that
Kumar et al.?° have suggested as an explanation for the
failure of the Griffiths sum rule?* for the susceptibili-

ties.
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