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Controlled Evolution of Highly Elongated Tokamak Plasmas
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Centre de Recherches en Physique des Plasmas, Association Euratom Co—nfederation Suisse,
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It is demonstrated numerically that a tokamak plasma can be evolved continuously from a near-

circular cross-section shape to a 4/1 vertically elongated racetrack. All intermediate stages and the

final state are stable to axisymmetric MHD modes. The stabilization is provided by the vacuum

vessel walls on the ideal time scale and by an orthogonal active feedback system on the resistive

time scale.

PACS numbers: 52.30.Jb, 52.55.Fa

We demonstrate here the feasibility of constructing
a tokamak experiment to explore PT limits in high-
current, high-elongation plasmas. A limit on PT (ratio
of plasma to toroidal-field pressure) in tokamaks, scal-
ing as I~/aBT, has previously been proposed and veri-
fied'2 in ideal-MHD calculations, for plasmas with
moderate elongations up to K=1.6. Here I~ is the
plasma current, a is the horizontal minor radius, and
BT is the toroidal field. At a fixed limiter safety factor
q@, I~ increases with increasing K at fixed a and BT,
which experimentally has allowed an increase in P T in
quasi steady-state discharges. 3 Highly elongated belt
pinches (~ —10) have obtained high PT (tens of
percent), but are transient (tens to hundreds of mi-
croseconds). Ideal- and resistive-MHD studies8 of an
infinite one-dimensional plasma have indicated that
high-elongation configurations may have high Pr lim-
its. In this Letter, two key areas are specifically ad-
dressed: (1) It is demonstrated that controlled forma-
tion and maintenance of highly elongated tokamak
plasmas in a realistic geometry is possible; (2) the
ideal- and resistive-MHD axisymmetric stability of
these plasmas is verified.

The geometry utilized in these studies is shown in
Fig. l. A rectangular vacuum vessel is placed inside
two vertical stacks of field-shaping coils which form a
periodic structure vertically. Limiter points are indi-
cated with a cross. The plasma evolution proceeds as
follows: A nearly circular plasma with q+ = 2 is
formed near the top of the vessel, with 80=0.80 m,
a =0.18 m, BT=1.5 T, and T,o=10 eV. The MHD
equilibrium and resistive simulations are begun at this
point. The plasma current is then increased at the
same time as the vertical elongation is increased, to
4/1 on the 10 '-s time scale. The currents are pro-
grammed so as to maintain qq, =2, in order to keep
the current profile as broad as possible.

The ideal-MHD equilibrium code TCVMHD is used
to calculate the preprogrammed coil currents for input
to the time-dependent STARTUP ' code. TCVMHD

computes axisymmetric, free-boundary tokamak equi-
libria with a predetermined plasma shape and the coil
currents necessary to produce that shape. In order to
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FIG. 1. Computational grid, coil, vessel, and flux-loop
geometry.

generate input data for the STARTUP code, we comput-
ed several racetrack equilibria for Table I with elonga-
tions ranging from K = 1.6 to 4. It was found that, for
fixed q+ ——2 at the limiter, the plasma current scales
with elongation approximately as

I, = (1+K')/2.

In the control system modeled in the STARTUP code,
active stabilization and control is provided by four in-

dependent feedback systems for radial field (RF),
quadrupole field (QF), octopole field (OF), and verti-
cal field (VF). These systems feed back on sums and
differences of the flux measurements on the flux loops
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TABLE I. Preprogrammed currents (in kiloamperes) in
each of the sixteen electric-field coils, plasma current, and
elongation at eight reference times. Linear interpolation is
used to define currents at intermediate times.

TABLE II. Z position of control-flux loops used at eight
reference times. At intermediate times, the control flux is
interpolated with use of the loop positions in the table. Flux
loops 1, 2, and 6 have R =0.62 m; flux loops 3, 4, and 5
have R = 0.98 m; while flux loop 7 has R = 0.8 m, Z = 0.72
m.
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KDop Q

2 and 3 0.513 0.440 0.480 0.500 0.550 0.560 0.560 0.560
1 and 4 0.430 0.360 0.315 0.250 0.180 0.135 0.070 0.000
5 and 6 0.353 0.280 0.150 0.000 -0.190 -0.290 -0.420 -0.560

The current vectors for each of the control systems
are determined by selection of coils or groups of coils
near the control-flux loops at each of the eight refer-
ence times. The inductance matrix M(t) between
these coil groups and the control-flux loops is inverted
to obtain the control-current vectors at each of the
eight times,

IRF(t) ™Rp(t)+Rp(t),

lv p(t) = Mv„(t) ev p(t),
1.6 2.0 2.25 2.5 3.0 3.25 3.62 4.0

IQp(t) = MQp' (t)@QF(t),

lop ( t ) = Mop ( t ) Pop ( t ) .

=( —1, —1, +1, +1, +1, —1, 0),

WQF= ( —2, +1, +1, —2, +1, +1,0),
(3)

Mop= ( —1, —1, —1, —1, —1, —1, 6).
Corresponding to each of the orthogonal flux-
measurement vectors of Eq. (2) is a vector of current
amplitudes I ( t),

I(t) = (l, (t),I,(t),I,(t),I,(t),I,(t),I,(t),1,(t) ).
(4)

1—7 described in Table II.
A given flux measurement is in general an interpo-

lated signal from two stationary flux loops. Thus, for
example, if t, ( t ( t2, then flux measurement
number 1 would correspond to

Wt(t) =a+(0.62, 0.43, t)

+ (1—~)e(0.62, 0.36,t), (1)

where a = (t2 —t)/(t2 —tt) and %(R,Z, t) is the po-
loidal magnetic flux at position (R,Z) at time t

The state vector for the flux-loop measurements is
denoted by

+(t) = (+t(t), +2(t), +3(t), . . . , +7(t) ). (2)

The orthogonal vectors corresponding to the four con-
trol systems are

eRF=(0, +1, +1,0, —1, —1,0),

Control-current vectors at intermediate times are
again defined by linear interpolation. For the plasma-
current control, a "perfect" Ohmically heated system
is modeled in which the poloidal flux everywhere on
the computational boundary is increased at the same
rate.

In the absence of plasma or additional conductors,
the control systems described above are independent
in the sense that the flux vector from one current vec-
tor is orthogonal to the other flux vectors. This
orthogonality property is approximately preserved in
the presence of conductors and plasma because of the
symmetrical placement of the coils and flux loops.
Thus the feedback-control voltage for each of the
feedback current groups is chosen proportional to the
inner product of its flux vector and the flux state vec-
tor. For example, the voltage driving the flux radial
field currents is

I RF(t) =v+Rp+(t)
where y is a proportionality constant.

The sTARTUp code' is a free-boundary axisym-
metric simulation code which models the resistive-
time-scale evolution of a toroidal plasma, including its
interaction with the poloidal-field coils and other near-
by conductors. Circuit equations for the poloidal-field
systems are solved simultaneously with the plasma
equations, allowing realistic modeling of passive and
active feedback systems. The plasma is modeled as a
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distributed-current resistive fluid whose shape and size
change dynamically during the evolution to remain in
near MHD equilibrium, with a single point of contact
with the limiter or magnetic divertor. Flux-surface-
averaged transport equations evolve the two-fluid adia-
batic variables and the rotational transform, together
with the entropy and number density for each species.
The computation is carried out numerically on a back-
ground Eulerian grid on which grid points may be one
of three types: conductor, vacuum, or plasma. The
vacuum is modeled as a cold (here 2.5 eV) pressure-

moving plasma-vacuum interface, are continuous y
contoured to compute the surface-averaged metric
quantities.

The disparate time scales in the equations are han-
dled numerically by artificial enhancement of the ion
mass and viscosity to slow down and damp Alfven
waves, and by the substepping of the flux-diffusion
and fast Alfven terms. The Alven velocity has been
reduced by a factor of p, = 4500 in the runs reported
here, and a normalized viscosity coefficient of v=8.0
was used. We have verified that these artificially large
parameters do not affect the motion of the plasma on
the L/R time scale of the passive coils when realistic
values of resistivity and inductance are used.

The vacuum vessel is modeled as a discrete set of 72
conductors spaced 0.05 m apart. The time constant of
each conductor is 12 ms, corresponding to a vacuum
vessel of thickness 0.025 m with a resistivity of 10
0, m. Independent induced currents develop in each
of the 72 conductors; however, a constraint is imposed
such that the sum of the 72 currents always equals
zero, modeling a gap. The time constant for response
of the feedback systems is also 12 ms.

If the plasma becomes ideal-MHD unstable during
its evolution, this instability will grow on the modified
Alfven time scale, which is an order of magnitude fas-
ter an eth th resistive decay time of the conductors or
the time scale over which the preprogrammed or ee-
back currents are changing. This instability motion is
thus readily distinguished from the stable resistive
evolution. As a check, we rerun a stable evolution se-
quence twice, once with the Alfven velocity-reduction
factor p, set equal to 3000 and once with the artificial
viscosity parameter v = 12.0. These should give results
that are indistinguishable from the original run, veri y-
ing that plasma inertia is unimportant, and thus ideal-
MHD instabilities are absent.

The computation is initialized to the equilibrium
configuration shown in Fig. 2(a). The plasma is
shown to evolve in a stable manner through the states
shown in Figs. 2(b) through 2(d). Examination of the
current required in the feedback systems shows that a
maximum feedback current of 20 kA was required to
maintain positional control of the plasma during the

evolution. The plasma was thus evolved up to the
maximum 4/I elongation at PT=2. 3O/o, with axisym-
metric stability found at all times. Initial studies indi-
cate that PT up to the Troyon limit' has little effect on
the axisymmetric stability.

%e plot the Z position of the plasma centroid versus
time as curve 3 in Fig. 3. Curves B and C show the
result for the same calculation repeated with the
mass-enhancement parameter p, = 3000 and with the
artificial viscosity v =12. The near identity of these
three curves verifies the axisymmetric stability during
the calculation. For comparison, we plot additional
curves D, E, and Fin Fig. 3 corresponding to reruns of
the original calculation with the feedback systems
turned off and the vacuum vessel walls removed at
times ti, t3, and t6 (Table I). In these cases, axisym-
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FIG. 2. Flux-surface geometry for a stable evolution se-
quence at (a) t = ti =0, (b) t = t3=0.075 s, (c) t= t5=0.137
s, and (d) t = t8=0.210 s.
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FIG. 3. Simulation results of Z position of magnetic axis
vs time for a physical sequence with mass enhancement and
viscosity parameters as follows: Curve 3, p, =4500, v = 8.0;
curve B, p, =3000, v=8, 0; and curve C, p, =4500, v=12.0.
Curves D, E, and F illustrate ideal-MHD instability when
the passive conducting walls are removed.
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metric instability on the ideal time scale is evident.
To demonstrate the separation of time scales in the

simulation, we plot in Fig. 4 simulation results for
0.154 s ( t ( 0.163 s of the Z position of the magnetic
axis versus time for the standard case (feedback and
walls), an ideal-MHD —unstable case with the conduct-
ing walls removed at t=0.154 s, and a resistive-
unstable case with the active feedback system shut off
at t = 0.154 s. The disparate time scales are evident.

In conclusion, we have found and simulated a
method for obtaining highly elongated tokamak plas-
mas on the 10 -s time scale by using a combination
of preprogrammed currents, passive conductors, and
an orthogonal feedback system. The equilibria all have
qq, = 2 at the limiter and broad, but not hollow,
current profiles consistent with the MHD evolution
equations assuming classical Spitzer resistivity. The
continuously evolved equilibria between a near-
circular plasma and a 4/I elongated racetrack plasma
are all stable to both ideal and resistive axisymmetric
MHD modes.
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