
VOLUME 55, NUMBER 21 PHYSICAL REVIEW LETTERS 18 NOVEMBER 1985

Quantum Oscillator in a Blackbody Radiation Field
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The quantum Langevin equation is used to calculate an exact expression for the free energy of a
quantum oscillator interacting, via dipole coupling, with a blackbody radiation field. In particular,
we obtain a temperature-dependent shift in the free energy. This result may then be used to obtain
corresponding results for the energy, the partition function, and other thermodynamic quantities.

PACS numbers: 32.60.+i, 05.40.+j, 12.20.—m, 32.80.—t

We consider the problem of determining the free
energy of a quantum oscillator in thermal equilibrium
with the radiation field at temperature T. In the
weak-coupling limit the free energy is given by the
Planck formula. Our purpose here is to give, within
the dipole approximations, an exact formula for this
free energy. (The reason that we stress the calculation
of the free energy rather than the internal energy is
that the former is a thermodynamic potential from
which the other thermodynamic functions can be
derived. ) Our result is that, in addition to a modifica-
tion of the Planck formula due to the finite linewidth,
there is a positive shift AFo(T) =7re (kT) /9ItMc
which is of quantum electrodynamic origin.

Problems involving the interaction of a quantum
system with a heat bath are receiving increasing atten-
tion in areas such as condensed matter' and quantum
optics. Our purpose here is to show that statistical
methods which make use of the quantum Langevin
equation can be a powerful tool for attacking such
problems. The correct form of the quantum Langevin
equation for a particular model of a heat bath was
given by Ford, Kac, and Mazur. Here we use this
equation for the case in which the heat bath is the radi-
ation field.

The quantum Langevin equation takes the general
form

mx +J) dt' p, (t —t')x (t') +Kx = F(t)

This is an equation for the time-dependent Heisenberg
operator x(t). The coupling with the radiation field is
described by two terms: the radiation reaction term
characterized by the memory function p, (t), and the
fluctuating term characterized by the operator-valued
random force F(t). For our purposes we need this

equation only to extract the generalized susceptibility,
which is done by forming the Fourier transform of (1)
and writing the result in the form

where we use the superposed tilde to denote the
Fourier transform, e.g. , x (t0) is the Fourier transform
of the operator x(t). Here n( to) is the generalized
susceptibility (a c-number) given by

n (to ) = [ —m to'+ E —i to p(( )],
where

p(to) = J dt p(t)e'"', Imto ) 0,

is the Fourier transform of the memory function.
Clearly p, ( )tais analytic in the upper-half to plane.

In addition, energy considerations require that the real
part of p( u) tbe positive on the real axis. Functions
satisfying these two requirements are termed positive
functions. This condition of positivity is of funda-
mental physical importance; its violation is tantamount
to a violation of the second law of thermodynamics
(see Ref. 5, and references therein). It is also very
restrictive: Positive functions have neither zeros nor
poles in the upper-half plane, on the real axis they can
have only simple zeros with negative imaginary coeffi-
cient and simple poles with positive imaginary resi-
dues, the reciprocal of a positive function is a positive
function, etc.

The system of oscillator coupled to the radiation
field in thermal equilibrium at temperature T has a
well-defined free energy. The free energy ascribed to
the oscillator, Fp(T), is the free energy of this system
minus the free energy of the radiation field in the ab-
sence of the oscillator. For this free energy we have
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the remarkable formula

Fo( T) = —
Jf do) f ((u, T) Im1 d 1no. (cu)

dQ)
(5)

where f (cu, T) is the free energy of a single oscillator
of frequency cu, given by the familiar formula (see,
e.g. , Landau and Lifshitz, especially Secs. 49 and 61),

f (cu, T) = kT in[1 —exp( Ace/—kT) ]. (6)

n(~) ~ II,. (o) —cu(')/ll. (co —o), ), Im(u ) 0,

Note that we discard the T = 0 contributions since our
interest is in the temperature-dependent effects.

Formula (5) is striking because it expresses the free
energy of the interacting oscillator in terms of the sus-

ceptibility (3) alone. It can be derived explicitly for
general microscopic heat-bath models which lead to a
quantum Langevin equation, but the following simple
argument contains the essence of the proof. From (3)
it is not difficult to see that —icon(cu) is a positive
function provided that p, (cu) is a positive function and
that m and E are positive. If the normal modes are
discrete, n(cu) will have poles on the real axis at the
normal-mode frequencies of the interacting system
and zeros at the normal-mode frequencies of the radia-
tion field in the absence of the oscillator. This should
be apparent from (2): If a(cu) = 0 there can be a fluc-
tuating force with no x, while if o. (cu) =0 there can
be a motion of x with no force. Therefore, one can
write

(7)

where the numerator is the product over normal modes of the free radiation field, and the denominator is the
product over those of the interacting system. In (5) it is understood that o. (cu) is the boundary value as cu ap-
proaches the real axis from above. If, therefore, one recalls the well-known formula I/(x + i 0+ )
= P(1/x) —i m5(x), one sees that

m 'Im[d Inn(o))/dtu] = g,. [n((o —o), )+5(co+iu, )]—g,. [h(o) —cu,. )+h(o)+o), )]. (8)

When this is put into (5) the result can be written as

Fo(T) = X,f(,, T) —g, f(;,T), (9)

where the first sum is clearly the free energy of the interacting field, and the second that of the free field. This
demonstrates our assertion.

To apply the formula (5) we must have an expression for the generalized susceptibility or, equivalently, the
function p, (co). The form of this function is implicit in any discussion of electromagnetic radiation reaction, but
we have been unable to find a convenient reference in which an explicit form is given, and so we will sketch a
derivation. In the dipole approximation the Hamiltonian for the oscillator interacting with the radiation field is

H= (1/2m) [p„—(e/c)A„] + —,
' Kx + ghcka„, ak„ (10)

k, s

where the vector potential is given by

A„= X (2rttc/kv)' '(fk'ak, e„, x+fka„,e'„, x), (11)
k, s

where fk is the electron form factor, e is the polarization vector, and Vis the volume. The Heisenberg equations
of motion obtained from (10) are

x = (I/m) [p„—(e/c)A„], p„= —Kx, ak, = —ickak, +i (27re2/tckV)'izfkx ek, x.

Integrating the last of these equations we find

ak, (t) =a(, (t) +i (27re /0ckV)' fkx ek', J dt'exp[ —i'(t —t')]x(t'), (13)

~fk(2= Q /(Q2+c k ) (15)

where a$, (t) is the free-field Heisenberg operator.
We now put this expression into (11) to obtain an ex-
pression for A„(t). By use of this, the first two of Eqs.
(12) can be cast into the form (1) with

p, (t) = (87re'/3 V) g„~f„~'cos(ckt), (14)

and with F(t) = —(e/c)A ~(t). Our results are insen-
sitive to the detailed shape of the form factor, f„; for
convenience of calculation we choose

where 0 is a large cutoff frequency. Then (4) gives,
upon passing to the limit of infinite volume V,

p, ((u) = 2e'0'cu/3c'(o) +i fl ). (16)

Note that this is a positive function. It does not show
the pole structure on the real axis evoked in the argu-
ment of the previous paragraph because in the
infinite-volume limit the normal-mode frequencies of
the radiation field are continuously distributed. In this
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case the real axis becomes a branch cut and the pole of
(16) in the lower half-plane is on the "unphysical
sheet" reached by analytical continuation through the
cut. When (16) is put into (3) one gets

The point here is that n( cd) has three poles, all in the
lower half-plane in accord with the positivity condi-
tion. Equating coefficients in the denominators of
(17) and (19), we find the relations

( )
Cd+/0

—m cd —iM I), cd + K ( cd + i II )
(17) 1 y L Q)OA

0, '+y
where M is the renormalized electron mass,

M = m+2e 0/3c .
(Cd2O+ y 0, ') (0'+ y)

Gtjo 0

(20)

The denominator in (17) can be factored to write

( )
(Cd+/0)

m (cd+i 0')(cd02 —cd2 —i „) (19)

Alternatively, one can view these as expressions for
the parameters 0, E, and M in terms of the parame-
ters II', cdo, and y which when substituted into (17)
give (19).

With the form (19) we see that

d inn(cd)
Im

de)

y (CdO + Cd ) A'
+

( 2 2)2+ 2 2 2+ II~2
0

CU +0 (21)

When this is put into (5) we can then pass to the limit of large cutoff, assuming kT/O'fI « 1. Then using the first
of the relations (20) we obtain the following exact expression for the oscillator free energy:

p OO y (Cd O + Cd )
FO(T) = —

J dcd f(cd, T)
(Cdo Cd ) + Cd

26' 0
(22)

Uo (T) tcdo[exp(iccdo/kT) —I] (28)
cdo = (E/M) 't, y = 2e2cdo2/3Mc3.

The result (22) can be written

Fo(T) =F0 (T) +UFO(T),

(23)
This is just the Planck energy of the quantum oscilla-
tor. Thus, Fo (T) corresponds to the Planck energy,
including the effect of finite width of the oscillator lev-
els. Therefore, the additional term AFO(T) is to be in-
terpreted as a temperature-dependent shift in free en-
ergy of each level. The corresponding energy level
shift,

(24)

where the first term,

p OO y(Cdo+Cd )
FO (T) = —

J dcdf(Cd, T)
( o' — ')'+y' '

In this result the parameters coo and y are to be taken
in the large-cutoff limit, which from (18) and (20) can In the weak-coupling limit (y 0),
be shown to give

(25)
b, UO(T) = —me (kT) /9hMc, ' (29)

AFO(T) = —
2 J dcd f(cd, T)

Ct) 0~

m e'(kT)'
9fMc

(26)

is a quantum electrodynamic correction.
The expression (25) is exactly what one would ob-

tain if in (5) one were to use (3) with p, = my a con-
stant (the friction constant) and with K = mcdo. In this
connection it is instructive to form the corresponding
energy, by use of the familiar thermodynamic relation
between energy, U, and free energy, I':

U = F TBF/aT. — (27)

should be recognized as the free energy of an oscillator
with natural frequency coo and width y, and the second
term,

is negative. We emphasize that for the oscillator this
is an exact result. It follows that previous perturbation
calculations, which when applied to the oscillator
lead to a positive energy shift, are not correct as they
stand and must be reinterpreted. In a subsequent pub-
lication we will show how this can be done in the
framework of thermodynamic perturbation theory.
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