
VOLUME 55, NUMBER 21 PHYSICAL REVIEW LETTERS 18 NOVEMBER 1985

Is There a Consistent Theory of Large-Amplitude Collective Motion?
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Villars s equations, first derived from the adiabatic limit of time-dependent Hartree-Fock theory,
are presented here as a set of exact conditions for the decoupling (in the adiabatic limit) of a sub-
system from a classical Hamiltonian system. It is emphasized that these conditions do not incor-
porate all the required decoupling conditions. By combining the additional requirements with
Villars s equations, we obtain a mathematically complete system, which will yield exact solutions
where such exist, but which can also be applied to cases of approximate decoupling.
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A self-consistent theory of large-amplitude collec-
tive motion is necessary for a fundamental under-
standing of a number of prominent features of nuclear
collective behavior. Examples are large-amplitude
vibrations of transitional nuclei and the coupled
rotation-vibrations of deformed nuclei, ' low-energy
fission, 2 and low-energy fusion. 3 Though significant
and fruitful efforts to construct a theory have been
made for more than a decade, an examination of the
proceedings4 of the last major conference devoted to a
review of this subject should convince any reader that
the question posed in the title of this Letter remains
unresolved.

The purpose of this note is to suggest that a solution
to this problem is already inherent in the formulations
available in the literature, but that it requires a fresh
look at the content of these formulations. Our discus-
sion will be carried out within the framework of classi-
cal mechanics in the Hamiltonian form. As shown re-
peatedly in different guises, 5 8 this should define the
leading contributions of the quantum theory even in
the nuclear case, where time-dependent Hartree-Fock
theory (the most customary starting point) can be writ-
ten in classical Hamiltonian form. 9'0

Our precise definition of collective motion is that it
is exactly decoupled motion. " Limiting ourselves to a
Hamiltonian quadratic in the rnomenta (adiabatic lim-
it), we obtain a set of exact conditions for such decou-
pling, known as Villars's equations. '2 ' At the same
time, we demonstrate in physical terms why these are

containing tV pairs of "single-particle" coordinates and
momenta, (x, , . . . , xtv) and (pt, . . . , pic). We intro-
duce a locally invertible point canonical transforma-
tion,

x.=@.(gt. . . . . Qw).

p~ = (8g~/Bx~)P~,

(2)

where (3) (sum over Itt, ) is well known from Lagrange-
an mechanics. We ask for the conditions that a
transformation (2) exist such that the transformed
Hamiltonian can be separated in at least one way into
two noninteracting parts,

an incomplete description of the system. A set of
equations which incorporates the additional require-
ments is presented and shown to provide, together
with Villars's equations, a fully determined theory of
decoupled (collective) motion. For the one-dimen-
sional case, it leads to the valley path discussed at
length in previous work, '4 '9 but for more than one
collective degree of freedom our method is new. In
the concluding section we describe how the same equa-
tions may be used to study approximately decoupled
motion and how a natural measure of the error of
decoupling may be introduced.

Conditions for exactly decoupled motion We stu. d—y a
system described by the classical Hamiltonian20

N
H (p, x) = —,

' X p~ &(x), . . . , xtt),

H(p(Q, P), x(Q)) =—H(P, Q) =Hc(P&, . ~
Pk' gi . , Qk)+HNc(P„+&, . . . , Pv; Qk+i, . . . , Qtv).

[Note that from (2) and (3), Hc (the "collective" Hamiltonian) has the form (i,j = 1, . . . , k)

Hc= ,' PtKtJP~+ V(g), . —. . , Qk),

K"= (Bg;/Bx )(Bg,/Bx ),

1985 The American Physical Society

(4)

(s)

2265



VOLUME 55, NUMBER 21 PHYSICAL REVIEW LETTERS 18 NOVEMBER 1985

Qk. y t —.. .—Q1V
= Pk+ 1

=. . .PN = 0'

i.e. , if the system point is initially on X, it must remain
on X.

The consequences of these requirements may be ex-
plored within the context of Hamilton's equations of
motion for the full system, and one may derive, as has
been done several times recently, '0 ' 20 a set of condi-
tions which follow from the vanishing of an inhomo-
geneous polynomial of degree two in the P;. These
equations, given below, refer strictly to the surface X.
The conditions of degree zero and one are, respective-
ly,

B V/Bx. =(BI/Bg, )(Bg,/Bx. ),
BQ'/Bx = K"(By /8 QJ ).

(10)

As has been stated repeatedly in the previous work,
the condition of second order in P; is a consequence of
(11) and of the kinematical constraint

5J = Bg;/Bg, = (Bg,/Bx ) (B@ /Bg, ) (12)

[which are a partial set of consequences of (2)]. What
has not been appreciated until now is that the proof of
this statement entails a decoupling condition not ex-
pressed by either Eq. (10) or Eq. (11).2'

To understand this point, let us list in "raw" form
the decoupling conditions implied by the requirements
(4) and (5): (i) & separates into two parts, one
depending on the g, , i = 1, . . . , k, and the other on
the Q„a = k+1, . . . , N. This is the content of Eq.
(10). (ii) K"= K"= 0, i.e. , the mass tensor has
block-diagonal form. This is the content of Eq. (11).
(iii) K'J does not depend on g, and K'b does not
depend on the g;, i.e. ,

BK'gyB Q BK~b/B g 0 (13)

i j=l, . . . , k; a, b=k+1, . . . , %.

The statement made above concerning the dependence
of the second-order condition on Eqs. (11) and (12) is
true provided that the first of Eqs. (13) is satisfied.
This observation, which to our knowledge has not
been made previously in the literature, will have a pro-

with a corresponding expression for HNC. ] The
dynamical requirements that must be satisfied are sim-

ply stated: Any solution of Hamilton's equations for
the subsystem described by Hc,

g, = BH,/BPtr

P; = —BHc//B Q;, i = 1, . . . , k,

must also be a solution of the full set of Hamilton's
equations for x (Q) and p (P, Q) when these are re-
stricted initially to the hypersurface X, defined by the
conditions

found effect on understanding finally how to construct
a closed theory of large-amplitude collective motion
(in the adiabatic limit).

Let us also remark that the distinction made in (4)
between collective and noncollective is physical, not
mathematical, and therefore our equations, if com-
plete, should provide the possibility of constructing ei-
ther Hc or HNC. This involves the interchange of the
sets i and a and therefore implies that the second of
the conditions in (13) must also be considered as a
decoupling condition.

Equations (10)—(12) are the Villars equations for
the system under study. The problem that we propose
to solve in this communication is what conditions have
to be adjoined to these equations to fix uniquely the
decoupled hypersurface X, provided that the latter ex-
ists. Our basic idea is the following22: Suppose that X
is k dimensional. Then it can be reconstructed provid-
ed that we can specify the tangent plane at each of its
points. These are determined by the k tangent vectors
(B@ /Bg, ), i =1, . . . , k. But according to (10) and
(») [I.—= (B I/Bx. )]

v. = (B v/Bg, )K'~(B@./BQJ) —= »(B@./Bg, ), (14)

which implies that the tangent plane must contain a
fall line (or line of force) of the potential. If we can
find k —1 additional vector-valued functions, con-
structed from the "ingredients" of the Hamiltonian,
which satisfy relations of the form (14), we will have
satisfied our goal, for altogether we would have a basis
for the tangent plane. In fact, we shall go further. We
shall exhibit at least @+1 such vectors. The require-
ment of linear dependence among these vectors will

determine the hypersurface X,

x.=4 (Qi. , Qk)

Determination of the collective hypersurface. The dis-—
cussion carried out in the previous section suggests
that if useful additional equations of the form (14) are
to be found, they must incorporate the consequences
of (13), which are the only decoupling conditions not
so far exploited. We state the relations needed in the
form of a theorem, which constitutes the most impor-
tant new result of this communication: Let us define
the family of scalars

(&) y= y

( +1)y & ~ ( )y ( )y~a CX A'

Provided that pillars's equations and the conditions
(13) are satisfied, then ( ~ V satisfies an equation of
the form

(o) y (~)g (By /Bg )

[For o=i, we have Eq.-(14), and for o=2, the result-
is also well known'6. ] The proof of (18), though not
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&-1 V = t-) V '& + &-1 V3 1 Bxt 2
BX2

a-=1, 2, 3. (20)

The consistency of these equations is possible only if

det I

( ) V
1

= 0, o-, n = 1, 2, 3. (21)

Since from a given Hamiltonian each element ( ) V
can be computed as a function of xt, x2, and x3, the
solution of (21) is of the form (19). From (20), the
partial derivatives of @ are then determined consistent-
ly. Finally, returning to Eqs. (11) and (12), the six
quantities (BQ,/Bx ) can be found easily.

The collective Hamiltonian is computed from the
equations

V(x, ,x2) = V(x, ,x2, @(xt,x2) ),
Xij(xt,x, ) = (a 0/Ox. ) (Ooj/ax. ).

(22)

This method can be extended to any N and any k ( N
Preliminary calcultations indicate that it is feasible in
practice.

Discussion. In racing thr—ough to the final goal, the
collective Hamiltonian characterized by (22) and (23),
we have left a number of interesting and vital ques-
tions behind in the wake: (i) We have assumed an ex-
act decoupling situation. This assumption was made
when we directed the reader to calculate the deriva-
tives (8@/Bx;) from (20) when we could equally have
made the calculation by differentiation of the solution
of (21). When the two methods of calculation agree
we have an exactly decoupled situation! (ii) In prac-
tice we are more interested in cases of approximate
decoupling. Remarkably, the method described is per-
fectly suited for such a study. If in Villars's equations
(11) and (12) and in Eq. (18) we make the replace-
ment

~@./t) 0;—y.', (24)

an examination of our algorithm shows that it can be

difficult, will not be given here. It can also be shown
that the set (18) is only a subset of all scalars whose
gradients are tangent to the collective hypersurface.
The larger set of scalars consists of the scalar products
of any previous vectors in the set.

Let us consider briefly (and by example) how Eqs.
(18) [in conjunction with Eqs. (10) and (11)] deter-
mine a hypersurface X and associated quantities. As
an illustration, we study the case N = 3, k = 2.
Without loss of generality, 23 we may choose xt= Ot,
x2 ——02, and

x3 = @(xt,x2) .

With this choice of coordinates, the relevant Eqs. (18)
can be shown to reduce to the form

carried through unchanged. " The listed equations thus
determine a hypersurface X, Eq. (15), and associate to
each point of X a plane spanned by the k vectors y',
i = 1, . . . , k. For decoupled motion, these are the
tangent planes to X. Otherwise, we may define a natur-
al measure of error at each point: Let

(25)

g ( 0 0 ) pi ~jigj /yk~klyl

is such a measure. Grosser measures may be intro-
duced by the carrying out of suitable averages of (26).
(iii) A word should be said about the geometric signifi-
cance of the proposed solution. For k=1, the equa-
tions which replace (21) may easily be shown to be the
defining equations for stationary paths (including val-
leys) on the potential energy surface. '" '9 For k & 1,
it can be argued that Eqs. (21) [or, more generally,
(18)] constitute a reasonable definition of a stationary
hypersurface on the potential energy surface. 26 (iv)
The only alternative method proposed in the litera-
ture, applicable to the case k & 1, is the method
described by Rowe and Basserman9 or by Marumori. 27

It is the only method available when the adiabatic ap-
proximation is not valid. However, in the adiabatic
limit, it is an approximate form of the theory in this
paper. For values of k other than 1 or 2, it may be
more convenient to apply in practice than the exact
method, and since one is interested in situations of ap-
proximate decoupling anyway, the additional errors
thus introduced may not be intolerable [and in any
event can be checked by means of (26)]. The ques-
tions raised here are matters for future study.

The authors are indebted to David J. Rowe for a
number of essential discussions. This work was sup-
ported in part by the U.S. Department of Energy under
Contract No. 40132-5-20441.
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