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We show that QED fluctuations for present metal-oxide-semiconductor field-effect transistor mi-
crocircuit devices are substantial and thus cannot be ignored. For example, the Casimir energy of a
gate-region capacitor is typically -,% of the electrostatic energy. Measurement of their electronic
transport properties is suggested as a tool to learn about some nonperturbative aspects of QED
which cannot be reached via high-energy or atomic physics.
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It is the purpose of this Letter to note that the
present microchip technology has already reached a
stage where purely quantum-electrodynamic (QED)
energy functions (e.g., the Casimir energy) are signifi-
cant (~10%) in comparison to the stored Coulomb
energy. Thus, in any theoretical analysis, we must of
necessity include QED effects. In fact, present mi-
croelectronics technology may be exploited with little
effort to provide a beautiful probe into the detailed
structure of the field theory underlying QED—at a
level which is unimaginable in high-energy physics.

Consider a generic field-effect transistor (FET) de-
vice with a gate-region capacitor with surface charge
density per unit area o = ne and distance d between the
plates. The (stored electrostatic energy)/area in the
capacitor is given by

uy=2mwo?d/e, 1)

where € is the dielectric constant. On the other hand,
the (Casimir energy)/area due to QED fluctuations is
given by

uy=— (c/87/ed®)7w*/90. @)
The dimensionless ratio
B=luy uyl = (7w/14400 )€/ (nd?)? 3)

measures the relative weight of photon oscillation in
QED versus electrostatic contributions to the energy.
The fine structure constant « = e?/kc = 1&-. Typical-
ly, we haye €~ 4, electron density n ~ 10'Y/cm?, and
d — 500 A. This gives

B=0.1,

the figure quoted in the introduction. This proves our
claim that QED effects are indeed sizable and must be
retained. Moreover, as 8 increases further (8>1),
the above Casimir analysis breaks down since other
nonlinear QED effects of the type discussed below
must be included.

The next interesting discovery is that not only are
QED effects of significant size for a metal-oxide-

semiconductor field-effect transistor device, but that
the latter can provide a probe into those structures of
QED which are unreachable by standard high-energy
experiments or by low-energy but highly accurate
atomic physics experiments.

High-energy physics experiments essentially test
(rather accurately) the perturbative aspects of QED in
the scattering of one charged particle by another. Pre-
cision measurements of atomic energy levels test small
QED corrections to the binding energy. Another cele-
brated example is the g —2 measurement, where once
again perturbative QED corrections are successfully
compared with data. In all of the above, one is prob-
ing perturbative QED. On the other hand, microelec-
tronic devices can allow us to investigate accurately
some nonperturbative, collective aspects of QED as
shown below.

In standard computations of electronic transport
properties at low energies, typically in the millielec-
tronvolt to electronvolt range, QED is justifiably ig-
nored on the grounds that energies in question are
so very much smaller than the ‘‘threshold”
2m,c? (~10° eV) necessary for sizable QED fluctua-
tions. However, there are well-known cases where this
perturbative argument does not apply. One example
countering the threshold-energy-barrier argument is
already provided by the (nonperturbative) Casimir
term u, in Eq. (2), which is independent of the
charged particle mass (as well as independent of €2 or
a). For microchips, since both »n and 4 are small, B8
becomes large.

Another example that violates the threshold-barrier
rule has been extensively discussed by us in connec-
tion with the electronic transport properties of FET’s
subjected to external electromagnetic fields.! Starting
from the physical, four-component massive Dirac
equation, it has been shown that the time rate of
change of the electronic spin density is independent of
the electron mass. In particular, we find that for a
capacitor at voltage V with a magnetic flux ® passing
through the capacitor plates, spin waves exist that in-
volve positron degrees of freedom down to virtually
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zero excitation energy.?

The chirality phase 6 of gauge theories® finds here a
transparent physical meaning also. For the QED prob-
lem mentioned in the last paragraph, 0 is related to the
ratio of charge to flux within the capacitor by?

0= (47 a) Q/®. )

The presence of « in the denominator is proof posi-
tive that we are dealing with nonperturbative QED.
The physical energies are periodic in 8. The implica-
tions of the generated vacuum current are far reaching
for practical devices. They cause real, measurable ef-
fects in macroscopic quantities like voltage, current,
charge, etc. A specific example is considered below.
Theoretically, we would be finding out what QED real-
ly predicts for the inside of a macroscopic dipole. Such
understanding in Abelian QED could be of consider-
able help in solving the much more difficult problem
of non-Abelian QCD for example.

Our last application illustrates how the energy
threshold barrier can be overcome in yet another way.
The notion of periodicity in 6 implies that the chiral
energy W(0+2m)= W(0), so that quite generally the
effective energy for the macroscopic capacitor can be
written as

W)= 3 hv,[1-cos(n6)], )

n=1
U(V,®)=minyg[Q%2C— QV + W(4n2Q/a®)],
(6)

where C is the geometric capacitance and 6 is as given
in Eq. (4).

The expression for chiral energy in Eq. (6) is more
accurate than the one-loop calculation giving the
Casimir energy. The tunneling frequencies v, for this
geometry can be obtained from the Dirac equation.
We find hv, ~ (m,c?) Vo (®/dy)d/(eA)V?, where A
is the area of the capacitor. However, observe that
while the first two terms in Eq. (6) are extensive, i.e.,
depend upon all electrons, the coefficient of the last
term is intensive—it depends upon the mass of a sin-
gle electron. Evidently, there can be situations where
the last term is of the same order of magnitude as the
other two. In such cases, the equation of state exhibits
hysteresis.

This can be seen through the following simple ex-
ample. If we only retain n=1 transitions, the gate
voltage as a function of the filling factor v =6/27 may
conveniently be written as

Ve(v)=Vw+ V,sin(2mv), 7

where V,=2daB/e and V,=4n?hv,/a®. For fixed
electron density (o constant) the second term rapidly
oscillates to zero as B— 0. Also, in the classical limit
(h— 0) the second term vanishes. For usual large-

area capacitors (4 — oo) the second term once again
vanishes in comparison with the first. On the other
hand, for a microcapacitor, as the second term be-
comes substantial, interesting nonlinearities develop as
shown in Fig. 1(a) for various values of y=V,/ V.
V,(v) changes sign for the critical value y*=1/2w,
which signals the onset of hysteresis. The Maxwell
construction, as in Fig. 1(b), is required for y > vy*.
This is our explanation for the effect observed in a
metal-oxide-semiconductor field-effect transistor de-
vice by Pudalov, Semenchinsky, and Edelman.*

We note in passing that the work of Pruisken® on
quenched averaging over impurity potentials also
yields 0 states, and so we indicate the similarities and
differences between the above considerations and the
impurity-averaging approach. (i) The electrodynamic
U(1) gauge group ultimately determines the 6-state
periodicity, although other groups are involved. In our
work chiral rotations of the Dirac equation are used,
and in the work of Pruisken the non-Abelian group
U(n,n)/U(n)xU(n) is involved in the intermediate
stages of the impurity-averaging process. The final 0-
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FIG. 1. (a) Plot of ¥, vs v (filling factor) as in Eq. (7) for
various values of y. (b) Same as in (a) for y > y* along
with the Maxwell construction (diagonal lines).
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state periodicity is virtually identical if the step Hall-
conductance values are related to the filling factor in
the usual manner. (ii) In both approaches there is the
notion that all of the hole-state Landau levels below
the Fermi level enter into the determination of the
Hall conductance. This last point allows for a concise
statement of the differences between the two ap-
proaches. (iii) A/ of the hole-state Landau levels
below the Fermi level means (to us) the inclusion of
the Landau levels of genuine positron states implicit in
the four-component Dirac equation in three spatial
dimensions. In all other theories, the nonrelativistic
Pauli equation limit is used and in strictly two spatial
dimensions. This quantitatively effects the strength of
the 6-state energy periodicities since our strengths
scale with the rest mass of the electron and, inversely,
as the area of the gate capacitor, while in the
impurity-averaging approach the #-state energy varia-
tions scale with impurity energy fluctuations intensive-
ly; e.g., per unit area a microchip or huge gate capaci-
tors of several farads would have the same intensive
oscillating @-state energy. (iv) Finally, consistent with
our view of treating an FET device as a quantum elec-
trodynamic circuit element, the whole notion of con-
ductance enters into the theory as the self-energy part
of the photon propagator. This approach is not taken
by any other workers in the field (to our knowledge)
although it is a well-known approach previously used
to describe the Casimir effect by Lifshitz and Pi-
taveski,® and also used by Schwinger, DeRaad, and
Milton’ in the Casimir-effect context.

In summary, we have shown that even present FET
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devices exhibit sizable QED fluctuations. Experimen-
tally observed hysteresis and phase transitions for such
devices are interpreted here as being due to topological
0 oscillations of QED. This analysis can be naturally
extended to study other facets of vacuum polarization
and Dirac sea fluctuations induced by external elec-
tromagnetic fields on FET’s. Details shall be present-
ed elsewhere.
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