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Complex Langevin Simulation of the SU(3) Spin Model with Nonzero Chemical Potential
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We study the effective three-dimensional SU(3) spin model with nonzero chemical potential.
This model describes the strong-coupling, large-fermion-mass limit of QCD at finite temperature
and baryon density. The results obtained with a complex Langevin algorithm are encouraging for a

future simulation of QCD with nonzero chemical potential. The Langevin simulations converge
even for large values of the chemical potential, and excellent agreement with exact solutions in the
extreme strong-coupling (P = 0) limit has been found.

PACS numbers: 11.15.Ex, 05.50.+q

Only recently has it been possible to study the ther-
modynamics of non-Abelian gauge theories in the
presence of dynamical fermions in large-scale Monte
Carlo simulations. These calculations gave first indi-
cations on the phase structure of QCD at finite tem-
perature, ' the mass dependence of the deconfine-
ment and chiral transitions, and the dependence on
the number of flavors. For a quantitative understand-
ing of the equation of state of strongly interacting
matter, it would be of considerable interest to analyze
the phase diagram of QCD in the whole tempera-
ture —chemical-potential ( T p, ) plan-e. However,
although the formalism for dealing with finite chemi-
cal potentials in lattice gauge theories has been
developed, standard numerical simulation techniques
are not applicable at p, &0. The reason is that for p, ~0
the fermion determinant is complex and thus leads to
a complex Euclidean action. [Here and in the follow-
ing we are concerned with a SU(3) theory. In the case
of SU(2) gauge theory the fermion determinant is real
and exploratory simulations at nonzero p, have been
performed. ] The integrand of the Euclidean path in-

tegral defining the partition function thus does not
have an immediate probability interpretation.

It has been noticed by Parisi and Klauder that,
while standard Monte Carlo techniques fail in the case
of complex actions, it is still possible to write down a

Langevin equation. In the case of a real action, time
averages computed from the Langevin equation con-
verge to equilibrium averages computed from the path
integral. However, not much is known about the con-
vergence properties of the Langevin equation for com-
plex actions and the conditions under which it will

yield results equivalent to those computed from the
equilibrium distribution of the Euclidean path integral.
Nonetheless, this approach has recently attracted much
attentions " and has been tested in the case of some
simple models with complex actions which could be
compared with exact solutions. These results are en-
couraging and show that at least for "not too large"
contributions of the imaginary part in the action the
Langevin equation will still resemble the distribution
of the Euclidean path integral.

In the present Letter we will study the suitability of
the complex Langevin algorithm for a simulation of
QCD at finite chemical potential. As a preliminary
step in this direction, we study the effective three-
dimensional SU(3) spin model, 'z '" which approxi-
mates the full SU(3) gauge theory with fermions in
the strong-coupling, large —fermion-mass limit.

The partition function is given by

Z=J II„dU„e ',

with action

5 = —p g„t (Tr U„Tr U„+ t +Tr U„Tr U + t ) —h g„(et' Tr U„+ e 4 Tr U„). (2)

Here U„E-SU(3), p, is the chemical potential, and p and h are effective couplings related to the original parameters
g2, T, and m (fermion mass) of the full gauge theory.

At p, =0 this model has been analyzed by use of mean-field techniques, and the phase structure in the
temperature-mass plane has been studied. ' ' It has been found that the model has a line of first-order phase
transitions in the (p, h ) plane starting at (0.13,0) and ending in a second-order phase transition at

(p„h, ) = (0.12, 0.059).' (In the heavy-fermion-mass limit the external-field parameter h can be related to the

fermion mass, h —e™,while p is related to the bare coupling gz and T, p —T.) For p, &0 the action, Eq. (2), is

complex. We may separate the imaginary part in the action by introducing the new couplings

h = h cosh@„g= h sinhp, . (3)

The action then reads

5 = —p g„t (TrU„TrU„+i+TrU„TrU +, ) —2h g Re TrU„—2ig Q„Im TrU„.
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TABLE I. Comparison of results for (Tr U) and (Tr U ') at P = 0 obtained from a
Langevin simulation with a discrete time step e = 0.005 with exact results.

Langevin
(TrU)

Exact
(TrU ')

Langevin

0.1

1.0

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.2
0.4
0.6
0.8
1.0

0.1089(24)
0.0907 (14)
0.0763 (50)
0.1297 (45)
0.2807 (72)
0.6533 (93)

1.2682 (38)
1.2633 (41)
1.3226 (47)
1.4401 (28)
1.5989 (31)
1.7774(22)

0.1050
0.0742
0.0735
0.1217
0.2769
0.6548

1.2676
1.2578
1.3162
1.4364
1.5986
1.7771

0.1089(24)
0.1815(10)
0.2736 (43)
0.4515 (39)
0.7268 (32)
1.1331(56)

1.2682 (38)
1.3441 (34)
1.4645 (35)
1.6120(21)
1.7695 (25)
1.9264 (10)

0.1050
0.1667
0.2723
0.4467
0.7271
1.1404

1.2676
1.3401
1.4613
1.6119
1.7725
1.9287

The phase diagram at p, ~0 has been analyzed in the mean-field approach for the case where the fields U„are re-
stricted to the Z(3) center of the SU(3) group. ' There it has been found that the location of the phase transition
is only very little influenced by the value of g. The influence of the imaginary part thus seems to be weak, at least
as far as the location of the phase transition is concerned.

The simulation of the SU(3) spin model is simplified by noting that the U's can be diagonalized simultaneously
for all sites of the lattice. The eigenvalues are given by exp(i0t), l =1, 2, 3, with 03= —(0, + Hz). The partition
function then reads

Z =J II„dH,„dH „e
where the effective action S,ff now contains an additional contribution from the Haar measure:

t t

2 lx 2x ~ 2 2~1x + 2x ~ 2 ~1x + 2~2xS ff S (0$ 0$ ) —g ln sin sin sin
X t

(6)

The Langevin equation for the effective action is then
given by

as„,—e = — ' +q (t),
dt '"

BO
IqX

I,X

with q being a random-Gaussian-noise term,

(~,„(t))=0,

(7),„(t) ~,, (t') ) = 25 (t —t') 8„,8, ,

(7)

In the case of a complex action the phases 0; will not
stay real. The Langevin equation describes their time
evolution in the complex plane. This corresponds to
an analytic continuation of the original action, where
U has been replaced by U '. Notice that from the
original SU(3) variables the property det U = 1 is
preserved in this analytic continuation.

To simulate Eq. (7), we discretize the time deriva-
tive using a second-order lunge-Kutta scheme. This
introduces systematic errors which are 0 (e ), e being
the discrete time step. To judge the reliability of the
complex Langevin simulation, we first studied the lim-
it p= 0 of the SU(3) spin model. In this case the par-

!
tition function factorizes, and we are left with a
single-site problem which is just the well-known SU(3)
one-link integral. '

We thus can compare the results obtained in the
simulation with an exact solution. In Table I we show
results obtained for (TrU) and (TrU ') for two dif-
ferent values of h and various chemical potentials.
The Langevin averages are based on simulations with
1.5 & 106 iterations. We used a discrete time step
e = 0.005. Obviously the expectation values agree well
with the exact results, although they are systematically
larger, which is probably because of the finite discrete
time step used to integrate the Langevin equation.
Even for the largest values of p„, where g/h = 1, we
did not observe any instabilities. Thus even when the
coupling strength of the complex part is comparable
with that of the real part in the action the Langevin
equation gives reliable results.

For Pe0 the results of the simulation cannot be
compared with exact solutions. However, from the
mean-field analysis and the limit P = 0 we expect that
the results will differ only little from those of a con-
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TABLE II. Strong-coupling expansion coefficients for
L (h, p, ) =

2 (TrU„+TrU„') for a fixed value of h

=—0.1365. The five values of (h, p, ) tabulated correspond to
the data points shown in Fig. 4.

Lo(h, p, ) Li(h, p, ) L2(h, p, )

0.005
0.02
0.04
0.1

0.1365

4
2.5083
1.8984
0.8303
0

0.1550
0.1548
0.1542
0.1500
0.1457

1.1684
1.1651
1.1561
1.0935
1.0289

14.0440
13.9983
13.8750
12.9981
12.0812

The expansion coefficients for some values of h and p,

are given in Table II. Although the convergence of
the strong coupling series is poor at p = 0.1 and
h =0.1365, we find that it describes quite well the
trend seen for the dependence on g at fixed h in the
simulation. The influence of the imaginary part of the
action also reflects itself in the difference of (TrU)
and (Tr U ') . While in the p, = 0 case (Tr U)
= (Tr U '), for p, a0 we find that (Tr U ')
& (TrU). This is similar to what has been found

from the analysis of the p=0 limit (see Table I).
(Tr U) ((Tr U ') ) is related to the free energy F
(E-) of static fermion (antifermion) sources:

(TrU) —e

(TrU ') —e

(13)

Thus the fact that (TrU ') is larger than (TrU) for
p, &0 indicates that the free energy of static antifer-
mions is smaller than that for static fermion sources,
i.e., it is easier to screen the charge of the antifermion
in a background of fermions created as a result of
nonzero values of p, .

To summarize, we find that the SU(3) spin model
with nonzero chemical potential can be well simulated
with a complex Langevin algorithm. Even for large
values of the chemical potential the algorithm con-
verges. This is encouraging for attempts to simulate

To see the influence of the complex action on ex-
pectation values, we performed a high-statistics calcu-
lation at h =0.1365 and P=0.1. In Fig. 4 we show
results for the average spin

L (h, p, ) = —, (TrU„+ TrU„'),
normalized with the result for p, =0. The data are
based on 20000 iterations on a 10 lattice. The results
are compared with a strong-coupling expansion for the
ratio L (h, p, )/L (h, 0), where

L(h, p, )

=La(A, p) +Lt(h, p)p+Lz(/1, p)p +0(p ). (12)

QCD at finite density by this approach. Work in this
direction is in progress. The phase diagram that we
obtain from the simulation of a complex action with
p, &0 is obviously closely related to that of the p, =0
real action with a suitably adjusted external-field
parameter h. This is expected to be the case also for
lattice QCD in the strong-coupling, large —fermion-
mass limit, where the SU(3) spin model is a good ap-
proximation. Attempts to reinterpret existing p. = 0
data under this assumption have been undertaken re-
cently. '7

We thank S. Duane and J. Polonyi for many valu-
able discussions. This work was supported in part by
the National Science Foundation through Grant No.
PHY82-01948.

F. Fucito, C. Rebbi, and S. Solomon, Nucl. Phys. 8248,
615 (1984), and Phys. Rev. D 31, 1461 (1985); J. Polonyi,
H. W. Wyld, J. B. Kogut, J. Shigemitsu, and D. K. Sinclair,
Phys. Rev. Lett. 53, 644 (1984); R. V. Gavai, M. Lev, and
B. Peterson, Phys. Lett. 140B, 367 (1984), and 149B, 492
(1984); R. V. Gavai and F. Karsch, University of Illinois
Report No. ILL-(TH)-85-&19, April 1985 (to be published).

F. Fucito, R. Kinney, and S. Solomon, California Insti-
tute of Technology Report No. CALT-68-1189, October
1984 (to be published).

J. B. Kogut, J. Polonyi, H. W. Wyld, and D. K. Sinclair,
Phys. Rev. Lett. 54, 1475 (1985).

4P. Hasenfratz and F. Karsch, Phys. Lett. 125B, 308
(1983); J. Kogut, H. Matsuoka, M. Stone, H. W. Wyld,
S. Shenkar, J. Shigemitsu, and D. K. Sinclair, Nucl. Phys.
B225[FS9], 93 (1983); N. Bilic and R. V. Gavai, Z. Phys. C
23, 77 (1984).

sA. Nakamura, Phys. Lett. 149B, 391 (1984).
sG. Parisi, Phys. Lett. 131B,393 (1983).
7J. R. Klauder, "Stochastic Quantization, "Lectures given

at the XXII Schladming School, March 1983 (unpublished).
J. R. Klauder, Acta Phys. Austriaca, Suppl. 25, 251

(1983), and Phys. Rev. A 29, 2036 (1984); J. R. Klauder
and W. R. Petersen, J. Stat. Phys. 39, 53 (1985).

9E. Gozzi, Phys. Lett. 150B, 119 (1985).
OH. W. Hamber and Hai-cang Ren, Phys. Lett. 1598, 330

(1985).
J. Ambjorn, M. Flensburg, and C. Peterson, Phys. Lett.

159B, 335 (1985).
tzT. Banks and A. Ukawa, Nucl. Phys. B225[FS9], 145

(1983).
J. Bartholomew, D. Hochberg, P. H. Damgaard, and

M. Gross, Phys. Lett. 133B, 218 (1983).
t4F. Green and F. Karsch, Nucl. Phys. B238, 297 (1984).
tsC. DeTar and T. DeGrand, Nucl. Phys. B225[FS9], 590

(1983).
t6F. Green and S. Samuel, Nucl. Phys. B190[FS3], 113

(1981); J. B. Kogut, M. Snow, and M. Stone, Nucl. Phys.
B200[FS4], 211 (1982); K. E. Eriksson, N. Svartholm, and
B. S. Skagerstam, J. Math. Phys. 22, 2276 (1981).

t7J. Engels and H. Satz, Phys. Lett. 159B, 151 (1985).

2245


