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Depinning by Quenched Randomness
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An interface attracted by weaker bonds to a wall can be depinned by quenched impurities in the
bulk as well as by thermal fluctuations. Exact calculations in two dimensions indicate that the de-
pinning transition with randomness is characterized by a discontinuous specific heat and a quadratic
divergence of the localization 1ength. Numerical simulations indicate delocalization by randomness
in cases where there is no analogous depinning by thermal fluctuations, e.g. , as in an interface
bound to a strip of weak bonds in the bulk, or for two attracting interfaces.

PACS numbers: 05.70.Jk, 68.45.—v, 75.60.Ch, 82.65.Dp

The behavior of an interface close to an attractive
wall is important to wetting transitions, and has been
extensively studied. ' In two dimensions an exact
solution by Abraham indicates that at low enough
temperatures an interface is pinned to a wall by weak
surface bonds, but at a higher temperature (below the
bulk transition temperature) it is unpinned from the
surface. The depinning transition is characterized by a
discontinuous interface specific heat and a wetting
layer whose thickness diverges with an exponent of
unity. The nature of the depinning transition in three
dimensions is more complex. Here it is pointed out
that depinning can be induced by quenched impurities
in the bulk, as well as by thermal fluctuations. Ran-
domness is, however, relevant at the transition and
modifies the critical behavior. In two dimensions the
replica method is used to calculate exactly quenched
average free energies for interfaces described by the
solid-on-solid (SOS) model. The depinning transi-
tion is still accompanied by a discontinuous specific
heat, although the separation from the surface now
diverges with an exponent of 2. Numerical simula-
tions indicate that random impurities induce a depin-
ning transition not only from a surface, but also in
cases where thermal fluctuations alone are not suffi-
cient to cause a delocalization. The examples studied
here are delocalization from a strip of weak bonds in
the bulk, and the unpairing of two attracting inter-
faces. The experimental and theoretical implications
of delocalization by quenched impurities in two and

more dimensions are discussed.
Abraham originally considered an Ising model on a

semi-infinite square lattice, with weak bonds at the
surface, and boundary conditions chosen so as to in-
troduce an interface separating up and down domains.
However, it was found 5 that the transition is not af-
fected by going to the SOS limit, which excludes
overhangs and island fluctuations, and is considerably
simpler to analyze. Here the SOS model is considered
in the presence of random bonds. The interface runs
parallel to the x axis on a square lattice with y ~ 1, and
one end pinned to y = 0 at x = l. At zero temperature,
in the absence of random bonds, it stays at y = 1 for all
x to take advantage of the weak surface bonds. At fi-
nite temperatures and because of randomness, the in-
terface fluctuates and its configuration is described by
the set of integer heights [y(x)). The energy cost of
each configuration has a contribution g„p, (x,y) for
vertical bonds broken at positions [y(x)], and a part

K„g„ly (x + 1) —y (x) l from broken horizontal
bonds. For simplicity only configurations with

ly (x + 1) —y (x) I
= 0 or 1 are included (this is not an

important restriction at low temperatures), and there is
a Boltzmann factor y = exp( —K„) for each jump
y(x+1) =y(x) +1. The bonds on the surface
p, (x, 1) = p, , are weaker than the bonds in the bulk,
which are assumed to be independent Gaussian ran-
dom variables of mean p., and variance o- . The total
weight W'(x, y) of interfaces connecting (0,1) to (x,y)
can be calculated recursively by a transfer matrix,
8'(x,y) = g, (y l

T (x) ly') W(x —l,y'), with

exp[ —p, (xy)](5,+y5, +yg )
(yl T(x) ly') =

exp( —p, )(&, +yn, ), y =1.

In the limit y « 1, the discrete problem can
be replaced by a continuum one with T(x)= exp( —~(x) ), and the "time-x" dependent Hamil-
tonian for a particle in a random potential

A (x) = —yd'/dy'+ V, (y)+ p, (x,y).

I

The surface potential V, (y) can be represented by an
attractive well next to an impenetrable wall. In the ab-
sence of randomness, the ground-state wave function
is p(y) —exp( —ky ), with A. = [(pt, —p, , ) —y]/y.
The inverse localization length, I = 1/X, results from a

1985 The American Physical Society 2235



VOLUME 55, NUMBER 21 PHYSICAL REVIEW LETTERS 18 NOVEMBER 1985

competition between the pinning energy p, b
—p, , and

the entropy loss due to elimination of paths to y ( 1

by the surface. The entropy term dominates at high
temperatures, and a depinning transition occurs at

y = p, b
—p,„with the localization length diverging with

an exponent of unity. [For a strip of weak bonds in
the bulk, corresponding to a delta-function potential in
(2), the entropy loss term is absent and the interface is
always localized. 4] The free energy, corresponding to
the ground-state energy of Hamiltonian (2), is
f'= pb —2y —y& . It describes a second-order transi-
tion with a discontinuous interface specific heat. 4 5

With random bonds p, (xy), the quenched average
free energy is calculated by the replica method

l[lnZ]„= lim„o([Z"] —I)/n), where Z" corre-
sponds to n replicated interfaces. [. . .]„denotes
random-bond averaging in the text, while an overbar is
used in the figures. If m interfaces cross at a bond
p, (x,y), the averaging process

[exp( —m p, ) ]„
= exp[ —m (p,, —a. /2) + m (m —1)a. /2]

renormalizes the bulk bond energy to p, b
= p,, —o- /2,

and introduces a pairwise attraction of magnitude cr

between the interfaces. The x-independent transfer
matrix is now T„=exp( —A „), with the n-particle

Ham&lton&an

d2 ~2
H „=n (p, ,—2y) + X —y, + V, (y ) — X r (x —xp).

dy 2 ~p
(3)

Since n (p, b
—2y) is just an analytic additive term in

the free energy, it will be ignored henceforth. First
the free energy of an unbound interface (far away
from the surface) is calculated. In the absence of the
potential the coordinates y range from —~ to ~, and
the ground-state wave function is

y(y, , . . . , y„) =exp( —K X ly —ypl),
n ( 18

where 4+K = 0 ensures the proper discontinuity in the
wave function derivative as two particles cross. Note
that a new length scale ld

——K '=4y/o-, associated
with disorder, appears in the problem. As discussed
previously in connection with commensurate to in-

commensurate transitions, new critical behavior is ex-
pected at length scales larger than ld. The quenched

I

average free energy is obtained from

[fo]~= lim (E„/n) = lim [ —yK2(n2 —1)/3]
n 0 n 0

= yK'/3. (4)
In the bound state, the wave function for any ar-

rangement 1 (yz& (. . . (yp„corresponding to a per-
mutation P of n particles, is tp(yp, , . . . , yp )
=exp( —g" &K yp ), with K = k+2(n —1)K. This
function has the proper derivative discontinuities
when particles meet, and falls off as exp( —Xyj &) close
to the surface. (The possibility of more than one par-
ticle inside the potential has been ignored. For this as-
sumption and the continuum limit to be valid, in addi-
tion to y, A. and K must also be much less than unity. )
The quenched average free energy of the surface state
is given by

fore, the exponent for the divergence of the localiza-
tion length changes from 1 in the pure system to 2 in
the presence of randomness.

Randomness, in fact, modifies the critical behavior
of the wetting transition for dimensions d ) —,'. This
is shown by examining a continuum version of the in-
terface problem in d dimensions. The interface height
is now y(x), with x a (d —1)-dimensional vector.
The continuum Hamiltonian is

~—Jt dd 'x[ —,
' y('7y)'+ p, (x,y) + V, (y)],

where y plays the role of the interface tension, p, (x,y)
is related to the randomness, and V, (y) is the surface
potential. Under a rescaling x P x and y ~~y,

y ~ yp" + ~, and the surface tension remains fixed
for (o= (3 —d)/2. This is the exponent for interface
roughening in the absence of randomness. The scaling

]

For «& &, [(y) ]„=1/A. as before, while close to the
transition it diverges as [(y) ]~ K/(A. —K) . There-

[f~]„=lim y[A. +2k. (Kn —1)+2K (n —1)(2n —1)/3]= —y(A. —2A.K+2K /3).
n 0

The important quantity is the difference in free ener-
gies between the free and bound states, i e.,
[f,']„—[fo]~= —y(A. —K) . The binding free energy
is decreased by randomness and goes to zero at K = g.
Thus the depinning transition can be induced by in-
creasing bond randomness, as well as by thermal fluc-
tuations. The quadratic nature of the free energy indi-
cates a discontinuous interface specific heat through
the transition, which is similar to the discontinuity ob-
served when the depinning is induced by thermal fluc-
tuations. However, the quenched average separation
of the interface from the wall, calculated from the
wave function after some manipulation, is

[(y)] =lim (n 'g y )„
""/(1 —e " ) (6)dp
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of randomness obtained from

[5p, (x,y)hp, (x',y') ] = o-'hd '(x —x')5(y —y')

is a. X
' t or cr A. with use of (o given

above. This implies that randomness is relevant for
d & —,

' and modifies the roughening exponent (. In
2two dimensions, recent results indicate (= —, with

randomness (as compared to (o ———,
' ). A pinning po-

tential V„close to the surface (or from a strip of weak
bonds in bulk), behaves as t5(y) and also scales as
t t ~ ' ~. The similarity in scaling of randomness
and the pinning potential is consistent with the results
obtained above, i.e. , as the relative strengths of these
effects is changed, there can be a transition from an
interface pinned by the surface to one pinned to the
random bonds in the bulk. (Note that the critical
dimension of interface delocalization is —, , as opposed
to 2 for delocalization of a particle from an attractive
potential. ) The wetting transition is in a new univer-
sality class for d ) —, , when randomness is relevant.
Indeed the scaling form for t suggests a localization
length diverging as y —t ", with v=(/(d —1 —().
Although this result is correct for the random and
nonrandom examples in two dimensions, its validity in
general requires further study.

Since the n 0 limit of the replica method may in-
troduce complications, it is worthwhile to complement
the theoretical results with numerical simulations. For
a given realization Ip, (x,y)} of randomness the weights
W(x,y) are generated recursively from Eq. (1), start-
ing with the interface at the origin [ W(0,y) =5~ o].
The weights are then used to calculate (y) for each x,

50

and the quenched averaging is performed by summing
over many realizations of randomness. (Note that un-
like Monte Carlo simulations, for a given realization
the transfer matrix gives exact results. ) Figure 1

shows numerical results for [(y) ], close to an attrac-
tive interface with z = exp(p, , —

p,, ) = 1.4, y = 0.3, and
for different amounts of randomness. It is numerically
convenient to use uniform random variables of width
s, rather than Gaussian variables of variance o-2

(a-2=s2/12). For this reason, and since relatively
large values of y are used, a quantitative comparison
with the continuum model cannot be made, although
the qualitative behavior is expected to be similar. The
solid curves in Fig. 1 correspond to s =0, 0.1, 0.2, and
0.3. As the amount of randomness is increased the in-
terface moves away from the wall, and is unpinned by
randomness at s & 0.3. The dashed line represents an
interface in the nonrandom case (s =0), but with
y=0.7. In this case the depinning is caused by ther-
mal fluctuations. In a log-log plot, asymptotic slopes
of —,

' and —,
' are expected for the unpinned-pure and

random interfaces, respectively. Although the slope
of the solid line in Fig. 1 is larger than the dashed line,
neither curve has reached its asymptotic limit.

I also used numerical simulations to study two prob-
lems where I was unable to obtain any analytical
results. One is that of pinning to a strip of weak bonds
in the bulk (instead of on the surface), corresponding
to a square-well potential in Eq. (2). In the absence of
randomness since the ground-state wave function is al-
ways localized, the interface is pinned to the weak
bonds. With randomness present the behavior of the
interface is studied numerically. The results in Fig. 2
correspond to a strip of attractive bonds of strength

20—

10—

0.6—

0.4—
1/g

0.2—

20

IO

I

1 2

I I I

5 10 20

I I I I I I

50 100 200 500 1000 2000 5 10 20

I [ } ] } .5
50 100 200 500 IOOO 2000

X

FIG. 1. Fluctuations of an interface from an attracting
wall due to impurities. Solid lines correspond to random
bonds of widths s =0, 0.1, 0.2, and 0.3, respectively, with

y = 0.3. The dashed line corresponds to y = 0.7 and s = 0.

FIG. 2. Delocalization by randomness from an attracting
strip at y =0. The solid curves correspond to s increasing
from 0 to 0.7 in steps of 0.1. The inverse localization length
is plotted in the inset.
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FIG. 3. Unpairing of attracting interfaces (solid lines) by
randomness; s = 0 and 6, respectively. The dashed line
shows the separation of repelling interfaces with s = 0.

z = exp(p, —p,, ) = 1.4 at y = 0, with y = 0.3. The in-
terface starts from y = 0 at x = 0, and the bulk bonds
are uniformly distributed about p,, in an interval of
width s. As s is increased from 0 to 0.7, the interface
moves away from the origin and is depinned for large
s. It is of course possible that {[ (J ) ]1'~ always
asymptotically tends to a large but finite value. How-
ever, the inset in Fig. 2 indicates that the localization
length probably diverges for s —0.6. The delocaliza-
tion transition is expected to occur when the disorder
length Id = K

' becomes comparable to the localization
length in the absence of impurities. The discussion
following Eq. (7) suggests that the delocalization tran-
sition is probably in the same universality class as the
depinning transition studied earlier. The divergence of
/ from the Fig. 2 inset, however, seems linear rather
than quadratic. This discrepancy is not serious if the
data points are not in the asymptotic regime. As in the
previous figure, much longer interfaces are necessary
to examine the true asymptotic behavior.

Yet another delocalization transition of interest is
that of two (or generally more) attracting interfaces.
Weeks and Chui4 have proposed that steps on the sur-
faces of semiconductors provide an experimental reali-
zation of such attracting interfaces. Indistinguishable
or noncrossing interfaces, such as the steps on a crystal
surface, undergo an unbinding transition as tempera-
ture is increased (again driven by the gain in entropy).
By contrast, distinguishable interfaces that are allowed
to cross are always bound, and cannot be unpaired by
thermal fluctuations alone. The solid lines in Fig. 3
show the separation of two such attracting distinguish-
able interfaces (z = 1.1 on collision) with 7 =0.05 for
s = 0 and s = 6. (The interfaces start at the same point
at x = 0.) It can be seen that randomness separates the
interfaces, and again an unpairing transition probably

occurs for K —X. The dashed line shows the separa-
tion of repelling interfaces (z = 0.9) in a pure system,
and it has a smaller slope than the solid line for s = 6
as expected. (A similar unpairing is also expected for
indistinguishable interfaces). It would be interesting
to look for such impurity-driven unpairing transitions
experimentally.

To summarize, it was shown that the depinning
transition can be induced by randomness, as well as by
thermal fluctuations. Exact calculations in two dimen-
sions indicate that the depinning transition with ran-
domness belongs to a new universality class, with a
discontinuous specific heat and a quadratic divergence
of the localization length. Indeed the scaling of inter-
face fluctuations with impurities is described by a new
critical point for dimensions —,

' & d & 5.' This new

scaling also modifies the commensurate to incom-
mensurate6 and wetting (depinning) transitions that
are directly driven by interface fluctuations. Numeri-
cal simulations indicate that bulk randomness is also
capable of inducing delocalization in cases where ther-
mal fluctuations alone are not sufficient, e.g. , inter-
faces bound to strips of weak bonds in the bulk, or a
pair of distinguishable attracting interfaces. The un-
pairing transition may have an experimental realization
in attracting steps on a semiconductor surface. Fur-
ther study of the unpairing of attracting interfaces can
also shed light on how randomness modifies fluctua-
tions and criticality. In a three-state Potts model, for
example, a 1-3 interface can be regarded as indistin-
guishable attracting 1-2 and 2-3 boundaries. Since ran-
domness tends to unpair such boundaries, the random
Potts interface will be thicker (wetter) than the pure
one, and the vanishing of the surface tension is ex-
pected to be different.
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