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We present the results of the first analytical study of finite-size effects in a random-field model.
In particular we consider the random-field spherical model in partially infinite geometries (infinite
in d' dimensions and finite in d —d' dimensions) under periodic and antiperiodic boundary condi-
tions in the finite directions. We find a simultaneous dimensional reduction by 2 in d and d' for
4 & d & 6 and 2 ~ d' ~ 4. For 0 ~ d' & 2, we find new power laws describing the approach to bulk
in different geometries.

PACS numbers: 75.40.—s, 05.40.+j, 05.70.Jk

Recently, there has been considerable interest in the
effects of quenched random fields on the bulk critical
behavior of n-vector models. ' For O(n) models with
n & 2, it is commonly believed that the critical
behavior of a random-field model (RFM) in d dimen-
sions is the same as that of the pure model in (re-
duced) d —2 dimensions. 2 For example, the lower and
upper critical dimensions of the RFM are believed to
be 4 and 6, respectively. On the other hand, very little
is known analytically about finite-size effects in RFM.
This is in contrast to pure systems where the finite-
size scaling theory and the approaches to bulk for
T & T, and T ( T, are well studied. "'

The aim of this Letter is twofold. First, we shall
solve analytically the spherical random-field model in
various finite-size geometries under periodic and an-
tiperiodic boundary conditions (without using the rep-
lica trick). Second, we shall show that, in the first-
order transition region, i.e., 0=0, T & T„ the ap-
proach to bulk of various quantities is mostly by
power-law exponents which are related to those of the
pure case by dimensional reduction by 2, not only in d,
but also in d' (the number of dimensions in which the
system is infinite), for 2 ~ d' ( 4. For 0 ~ d' & 2, the

approach is by exponents which are unrelated to those
of the pure system and for d'=4, which is the lower
critical dimensionality, the approach is exponentially
fast for all quantities except for the free energy.

Our results are summarized in Table I for different
geometries. The dimensional reduction can be seen by
comparing the results for a (d, d')-dimensional RFM
system with that of a (d —2, d' —2)-dimensional pure
system for 2 ~ d' ~ 4. For 0 ~ d' ( 2, the results can-
not be understood by dimensional reduction. But, for
the case d'=0, the "block" geometry, they can be un-
derstood by an appeal to random-walk arguments lead-
ing to an exponent d/2 in contrast to the exponent d in
the pure system. " For the free-energy density in the
antiperiodic case, the approach to bulk is like I 2 for
H = 0, T ( T, in all geometries (here L is the length
of the system in each of the finite directions). This
can be understood as a result of the presence of a he-
licity modulus in the low-temperature phase.

Even though we have derived these results only for
the spherical model, by previous experience with pure
systems, it is tempting to conjecture that these ex-
ponents may be correct for all n-vector O(n ) 2)
models. In the rest of the Letter, we present a sum-

TABLE I. Approach to bulk of the free energy f, susceptibility X, specific heat C'si (all per unit volume) for T ( T„H = 0,
L ~ for the RFM and pure system for periodic (PBC) and antiperiodic (APBC) boundary conditions. The geometry of the

system is L && oo, 4 & d & 6, 0 ~ d' ~ 4 for the RFM and 2 & d & 4, 0 ~ d' ~ 2 for the pure system.
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H= —J XSS —X HS;+X X S;,
nn

in the usual notation, where, in addition, H; are in-
dependent, randomly distributed fields such that

H;=H, all i,

HHj=H +o- 5j, all i,j.
(2a)

(2t )

Here the bar denotes the average with respect to the
probability distribution. The spherical field A. has been
introduced so as to satisfy the mean spherical con-
straint,

g(S,') =N, (3)
i =1

mary of the techniques and our principal results. 7

We consider a system of N spins located at sites r; of
a hypercubical lattice of size (N&a &&N2a x . XN&a
= Na ) interacting via the nearest-neighbor Hamiltoni-
an 8

where the angular brackets denote the usual thermal
average. By using standard techniquess 9 we get for
the free energy per spin

F(p,H, , Z;N)

X in[p(A. —p,„)] — g, (4)
2pN „ 4N „X—p,„

where p= T ' (we take ka ——1), and the eigenvalues
p k are given by

d

p, q = 2J X coskj, k~. = 2n (nj + r )/Nj,
j=1

nj ——0, 1, 2, . . . , (N,. —1). (5)
Here Hk g; ——~H;yk(r) where the eigenfunctions are
given by

yk(r)=N 'j2exp(ik r)

and v = 0 ( —,) for periodic (antiperiodic) boundary
conditions. Taking the average of (4) with respect to
the distribution with the use of (2), we get, for H = 0,

1 d
1F= ln p A.

—2J X cosk,.
2pN 1„ 1

The constraint equation becomes

2

X X —2J X cosk,
(nj) . j=1

(7)

2K = —X ——2 X cosk,.
1

N(„) J
d —2

+ —X ——2 X coskj
injj j= 1

The terms for a =0 in these equations are the pure-system ones studied by Singh and Pathria5 in detail for
2 & d & 4. Their methods can easily be extended for 4 & d & 6, for the case at hand. The terms with a.&0 are re-
lated to the a = 0 terms by differentiation with respect to k. Because of this simple structure of Eqs. (7) and (8)

I

we were able to study the RFM in detail in the general geometry L~ " x ~~ . In principle, the method amounts to
replacing sums in d infinite directions by integrals and studying the remaining sum in d'= d —d dimensions by
using the Poisson summation formula.

We have studied the free energy, the specific heat, and the susceptibility (with H=O; a&0) using these
methods. As an example, we quote the result for the singular part of the specific heat. We get

'2
C ts~ = 1024m"j2 T, (a-). (ay/L)' '

a'T&(0) [I'((6—d)/2) +2K((d —6)/2~d', y T)]'
where the parameter y is given by the implicit equation

T T, (a.) J —(ay/L )" 4

T, (0) ~ 64m'j'
4 —d 2K d —4

2
3'

Here y = —,
' (L/a ) (A. —2dJ ) 'j = L/2g, g is the correlation length,

T, (a.) = T, (0) [1——,
' (a/J)'I ],

d —2
1 f02 jf f+ 27K

I„= „i dg& . dH„X (1 —cos8 )
4(2m)&~ o Jp j (12)
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and, finally,

K (~ Id',y;r) = X II cos(2mq;r)
K, (2laly)

,(„.),= t

fqf~o, (13)

where K, (x) is the modified Bessel function.
The various properties of these K sums have been

studied in detail previously. For T & T„as L,

y ~ and the K sums vanish as e ~, so that C s

approaches its bulk 1imit as e ~. For T & T„
i. ~, y 0 ( —d n. /4) for periodic (antiperiodic)
boundary conditions and the K sums diverge. Using
their properties, we find that the bulk limit is ap-
proached as L, ", where

to = 2(d —d')/(4 —d'), 0 ~ d' & 4, (i4)

and exponentially fast only for d'=4. Comparing co

with the rate of approach in the pure case, 4 s viz. ,

g=2(d —d )/(2 —d ), 0 (is)

we find dimensional reduction by 2 in both d and d'.
One can similarly obtain all the other results men-
tioned in Table I.

We mention only that in the antiperiodic case, the
free energy per unit volume deviates from the bulk for
T & T„L ~ by —,d'm Y(T)/L where Y(T), the
helicity modulus, is given by

Y(T) = (2J/a ') [Mo(T)1',

in terms of the spontaneous magnetization (bulk)

T, (tr) —T
[M,(T)]'= ', T ~ T, (~).

T, 0

(16)

As shown in Table I, the analogous calculation with
periodic boundary conditions yields a power law I
with e ) 2. The relation (16) is identical to the one
found in the pure case,"although Mo(T) shows the
effects of the random field by being only partially sat-
urated [i.e., Mo(0) = [T, (a-)/T, (0) ]'I' & 1).
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