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1/f'Noise of Granular Metal-Insulator Composites
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The resistivity p varies by 7 decades and the intensity of its fluctuations [S~(f) ]~ H, varies by 17
decades in composite films of Pt and Alq03 for a wide range of metal volume percent
33olo~ p ~100'lo and temperature 7 & T & 300 K. The power spectral density Sv(f)~1/f" (1/f
noise) with 0.8 & a & 1.2 at all Tand p. The normalized noise intensity l fSq(f)/p2]~ H, rises by 105

with decreasing p and saturates below a metal-insulator transition, p «50'lo. Results implicate a
dual conduction mechanism for composites combining noisy tunneling and quiet metallic paths.

PACS numbers: 72.70.+m, 05.40.+j, 73.60.Dt

The electrical resistivity p of granular composites of
metal and insulator generally increases by several or-
ders of magnitude as the metal volume fill fraction p is
reduced below a critical threshold p, . ' For p~p„
conduction is dominated by charge percolation along
continuous metallic filaments, but below p, it contin-
ues by thermally assisted tunneling or hopping conduc-
tion between isolated metal islands. '2 Substantial
resistivity fluctuations characterize metal-insulator
composites with the power spectral density
S~(f) =1/f (1/f noise), where f is the frequency in
hertz. 3

Current studies of the percolation problem offer
models for p and the noise intensity [S (f)]~ H, in
composite and discontinuous conductors. 4 ' While
percolation conduction on a metallic network is analo-
gous to fluid flow in porous media, application of per-
colation models to electrical conduction in composites
requires multiple conduction mechanisms. Measure-
ments of S~(f) as functions of p and temperature T
probe conduction mechanisms, test percolation theory
calculations, and may define percolation model re-
quirements for real composite conductors. 6 s'0

Here we report measurements of p(p, T) and S~(f)
at 1 Hz in platinum-metal —aluminum-oxide (P t-
A1203) composites for a wide range of p and T. We
found I/f noise for all p and T. Tunneling processes
are implicated in the fluctuations of the conductivity,
with the metallic paths acting to shunt these fluctuat-
ing paths. Therefore, we find that percolation models
for these composites should include both tunneling
and metallic links as alternative conduction paths to
account for both the conductivity and I/f'noise.

Stable thin-film conductors of thickness t = 1500 A
were deposited onto hot (40Q C) single-crystal sap-
phire substrates (bearing Au-Cr contact pads) by co-
evaporation of Pt and A1203 in a dual-electron-
beam —vacuum system. p was determined by monitor-

ing of the deposition on quartz oscillators. To config-
ure the specimen geometries the films were ion milled
to the form of standard four-probe resistors plus a
center tap with resistor length 1=40 p, m and width
w 2 pm.

These five-probe samples were connected into a
Wheatstone bridge with the specimen forming two ad-
joining legs (r~, r2 with r& = r2) and the center tap
grounded. The opposite legs consisted of large
(R ~ 10r&) wire-wound low-inductance resistors. If
r& ( 1 kA, the bridge was excited with a 500—2000-Hz
sine wave and balanced. The fluctuating balance error
signal (measured at the voltage contacts) was ampli-
fied by a PAR 116 preamplifier and fed to a PAR
124A lock-in detector. The power spectral density of
the lock-in output was measured with an HP 5420A
spectrum analyzer. If r~ & 1 kO, dc excitation of the
bridge was used to avoid stray-capacitance problems
and the error signal was simultaneously amplified by
two PAR 113 preamplifiers in parallel and the cross
power spectral density was measured to reduce pream-
plifier noise. Details are presented elsewhere. "

The power spectral density of the resistivity fluctua-
tions, S~(f), is defined in terms of the observed volt-
age fluctuations, S (f) = (wt/l) St (f)/I; and for all
samples it is found to be of the form S~(f)~ 1/A f
with 0.8~ a ~1.2. Here 0 is the sample volume and
I the current. '2 The approximate inverse-frequency
dependence was observed over two to five decades for
all samples at all p and T with no systematic depen-
dence upon either p or T.

Figure 1 presents logarithmic plots of the T depen-
dence of p( T)/p(300) and a tabulation of p (3QQ) for
seven composites. '3 For p ) 59'Io p falls linearly with
temperature until limited by impurity scattering as in
dirty metals. The resistivities at low metal fractions
(p» 50'/o Pt) increase as the temperature is reduced
as is expected of thermally assisted tunneling conduc-
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FIG. 2. Norma1ized noise intensity as a function of p.
Saturation occurs for p & p, .

'I 0

tion in metal-insulator composites. ' If p & p„no
continuous metallic backbone exists, only isolated
metal islands or metal strings that decrease in size with
p. ' The transition from metallic conduction to ther-
mally assisted tunneling occurs for p between 59% and
50% Pt.

In Fig. 2 we have plotted the logarithm of the
resistivity-normalized spectral intensity, [f

RSVP(f)/

p l t H„as a function of p for T= 300 K. The defini-
tion of the resistivity-normalized spectral intensity
scales out the inverse-volume and -frequency depen-
dence. From the exceptionally low noise level of pure
Pt, ' [fAS~(f)/p ]t H, increased monotonically by 5
orders of magnitude with decreasing p and then sa-
turated at p, where the conduction mechanism
changed from metallic conduction to thermally assisted
tunneling.

We model the composite conductors as a combina-
tion of tunnel junctions and continuous or quasicon-
tinuous metallic paths, the length of the continuous
metallic paths varying with p. Qualitatively, compo-
sites are represented by a parallel resistor network with
two resistances AT and RM, RM represents the con-
duction through the continuous metal with negligible
conductivity fluctuations, and RT represents the col-
lection of tunneling conduction paths to which we at-
tribute most of the conductance fluctuations. '5'6
From such models we can qualitatively understand the
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FIG. 1. Logarithm of p(T)/p(300) as a function of logT
for seven samples, six containing 43%» p «100% Pt and
one with 46% Mo in A120, . p(300) is tabulated in units of
ohm centimeters. The dashed horizontal line dp/dT=O
separates the meta11ic and hopping regimes.

saturation in S~(f)/p or Sz(f)/R . The power spec-
tral density of the resistance fluctuation in
R =RTRM/(RT+R~), the parallel combination, is
given by S~(f)/R = I[R~/(RT+R~)] }Sg (f)lRT.
For high-metal-content samples R~ && RT and hence
Sz (f)/R2 is reduced by the small factor [R~/
(RT+ RM) ] . As p is reduced, the continuous metal-
lic paths become more tenuous, eventually leaving
only finite strings and metal islands when p & p, .
Thus as p p„R~ ~ and Sz(f)/R saturates at
the level S~PRT2. For p )p, the continuous metallic

paths serve to short out some of the conductance fluc-
tuations of the tunnel junctions without themselves
adding significantly to the observed noise. For p (p,
both S~(f) and p are dominated by the same conduc-
tion mechanism, and scale similarly with p leading to
saturation of S~(f)/p .

The properties of the tunneling conduction paths are
further manifested in the temperature dependence of
S (f) for p ) p, . In Fig. 3 [S~(f,T)/S (f, 300)]t H, is
plotted as a function of temperature for p )p, . The
normalization scales out the 106 variation of
S~(f, 300). Plotted for comparison are data for an in-
dividual Al-A1203-Al tunnel junction. ' The striking
similarity suggests that the temperature dependence of
S~ (f; T)/S~ (f, 300) for p )p, reflects the conductance
fluctuations in the tunneling paths.

Figure 3 also shows that S~ (f; T)/S~ (f, 300) for
p =7lo/o Pt and p = 59o/o Pt rises rapidly at very low T.
The inset shows that for p =59'/o Pt, p(T) increases
approximately logarithmically with T for T(5 K as
expected for weak localization in two dimensions. '7

Electron-impurity scattering in the metallic strings at
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FIG. 3. T dependence of the relative noise intensity for

p & p, and for an individual Al-A1203-Al tunnel junction.
The inset shows an approximate logarithmic dependence of
p(T) for p = 59% Pt

low temperatures should generate such an enhance-
ment in both p(T) and Sp(f, T).' '8 Kirkpatrick and
Dorfman'8 have predicted that Sp(f, T) =1/Tf, for a
two-dimensional (2D) system; however, it is not clear
how their analysis could extend to very low frequen-
cies.

For p (p„[Sp(f,T)/Sp(f, 300)]t Hz increases rap-
idly with decreasing temperature as the log-log plots of
Fig. 4 illustrate. For p = 50o/o the noise magnitude ini-
tially decreased by a factor of 2.8 and then rose by
more than 2 orders of magnitude; for p =43'/o there is
no initial decrease but an even more dramatic rise as T
is decreased. Also illustrated are results from another
system composed of 46'/o Mo in A1203 which shows a
similar behavior.

When p ( p, the composite systems are composed
primarily of metallic islands imbedded in A12Q3 with
no continuous metallic backbone. The temperature
dependence of the 1/f noise then involves several T
dependent factors. Hopping or thermally assisted con-
ductance G~. between islands is expected to involve the
product of the tunneling probability from island i to is-
land j, and an Arrhenius factor for the probability of
charge transfer requiring an energy E;, = e2/2'.
Here e is the electronic charge, d is on the order of the
island diameter, and K is the dielectric constant of the
insulator. The island diameter d; and separations sI
are not uniform but have some, often log normal, dis-
tribution. Thus the tunneling conductance represents
a sum over terms of the exponential form G,,

10
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FIG. 4. T dependence of the relative noise intensity for
u ~Pc.

'l0

= exp( —2Xsj —EJ/kB T), with EJ =E„ka Boltz-
mann's constant, and X representing the tunneling
barrier height. '2 As the temperature is reduced the
probability for charge transfer along some tunneling
paths decreases, diminishing the effective number of
conducting pathways. Thus S (f) should rise rapidly
with decreasing temperature. However, S~(f) from a
single tunnel junction decreases slightly upon cooling.
The observed temperature dependence in Fig. 4 re-
flects the competition between these processes. Note
the contrast with Fig. 3 where p & p, . There the Ar-
rhenius factors are suppressed because most metal par-
ticles are attached in strings so that E„is negligible. "

Recent theoretical analysis of conduction on random
percolation networks of noisy resistors has generated
exponents for the resistance and the I//f' noise. 8

"Swiss-cheese" models for continuum percolation
conduction on the interstices amongst random holes
yield additional sets of critical exponents. 6 to These
models all assume a single conduction process that also
generates the noise. In contrast, our results demon-
strate that metal-oxide composites involve dual con-
duction mechanisms with metallic conduction control-
ling the conductivity and thermally assisted tunneling
dominating the noise. An analogous disparity is quite
likely to apply to some discontinuous metal-film con-
ductors where interparticle tunneling occurs.

Present percolation models may nevertheless be
directly applicable to metal-insulator composites over a
wide composition range under certain conditions and
may account qualitatively for S (f; T) for our compo-
site systems when p ( p, as follows: If the tempera-
ture is sufficiently low the temperature dependence of
S (f, T) is dominated by the Arrhenius factors which
freeze out conduction paths. Then the variation in
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magnitude of Sp(f, T) due to thermal activation again
becomes a percolation problem where variation of p is
approximately replaceable by variation in T. Thus the
measurements of p(p), S~(p), and p(T) imply the
function S~( T) provided that microstructural similari-
ty is retained. Experimentally S~( T) and p( T) are ex-
pressible as power laws in T. Thus a scaling law
S ( T) = p ( T) ~ can replace the customary S~ (p)= p(p)2. Lattice theory predicts that S (f, T) = p0,
with Q =2.86 in 2D and Q =2.77 in 3D. For the
Swiss-cheese continuum model, Tremblay, Feng, and
Breton o obtained Q = 5.2 and Q = 4.1 in 2D and 3D,
respectively, while Garfunkel and Weissman» ob-
tained Q = 6.2 for one version of a 2D Swiss-cheese
model. We find that Q =6.22+0.06 for p =50% Pt
and Q = 4.39 + 0.04 for p = 46/o Mo by fitting the data
in Figs. 1 and 4 over more than a decade in T. The
critical-path method2' implies that effectively p =p,
over a wide range of T.

We have found that metal-insulator composite con-
ductors involve multiple conduction mechanisms each
distinguished by different noise levels. Therefore, we
point out the need for theoretical analysis of dual-
conduction-mechanism percolation problems. In our
system, the principal features of each mechanism are
identifiable with the help of the T and p dependence of
p and Sq(f). The association of p and T dependence
allows simple percolation models to be applied approx-
imately for p ( p, and low T. Our results experimen-
tally confirm the common theoretical assumption of
local microscopic sources for the 1/f noise with the
percolation network merely moderating the bulk noise
intensity. Finally, we should note that none of these
concepts yet identifies the microscopic mechanisms for
generation of 1jfnoise. .
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