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Solution of the Kondo Problem by Diagrammatic Methods
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A self-consistent parquet approximation is shown to give exact results for the Kondo problem in
the scaling limit.

PACS numbers: 75.20.Hr

By concepts devised by Gell-Mann and Low, '

Feynman-diagram methods have been used to derive
scaling laws for the weak-coupling limit of the Kondo
problem. Ho~ever, it seems to be widely believed
that such methods are incapable of dealing adequately
with the crossover to strong coupling. After the nu-
merical work of Wilson4 (and recent Bethe-Ansatz cal-
culations ) it is known that this crossover is character-
ized by the "magic" ratio W'= (TH/To) = (~/e)'
where the zero-temperature susceptibility is X= @, /
vr To and where TH is the energy scale which enters,
e.g. , the formula g= —,

' [In(H/TH)] ' for the high-
field coupling constant. Here 0denotes the magnetic
field. The acid test of any approach to the Kondo
problem is its ability to reproduce this number.

In this Letter I wish to report the derivation, by dia-
gram methods, of an analytical scaling law which is not
only valid in the weak-coupling limit but which also
spans the crossover to strong coupling. The results
obtained here agree with those obtained via the

aforementioned methods and, in particular, the magic
crossover ratio W'= (vr/e)~t2 is rederived. To the
author's knowledge this is the first realization of such
a weak-to-strong analytic scaling theory

The traditional view3 4 has held that the effective
coupling constant approached infinity as the energy
scale is decreased. If this were to imply a divergent in-
teraction vertex, all diagrams would be important to
the crossover and the task would be impossible by the
present methods. At least for the regularization(s)
used here this is incorrect; the impurity self-energy
X —Ip J I'~ D exp(1/p J) acts as a cutoff in the strong-
coupling limit, i.e., the logarithmic integrals I—ln(X/
D) —1/p J. The leading logarithmic terms are of order

p J and other terms are small by factors of p J in the
scaling limit, i.e. , when J 0, D ~ with TK fixed.
However, as will be seen, the results are in fact in total
accord with the dictates of the Nozieres6-Wilson fixed
point.

The Hamiltonian is written as

0= X„..„.n„.—(J/X) X„„, ,a„'. (S s+ —,'),a„, ,

Here S (s) refers to the impurity (electronic) spin.
The irrelevant potential-scattering term represented by
the —,

' is added to simplify the diagram structure. All

matrix elements are + —,
' and there are no longitudinal

matrix elements for opposite spins. The g factors for
the conduction electron and impurities are both taken
equal to 2 (g=2). The Abrikosov projection tech-
nique is used7 and the temperature is Q.

The idea is to identify a suitable quantity which will

be determined by a self-consistent equation. The
value of the two-particle self-energys X for the
transverse susceptibility is chosen. This self-energy
enters as a dressing in the relevant diagrams. The de-
tailed justification of the methods, the particular se-
quence of diagrams to be summed, cancellations, etc. ,
will necessarily have to appear elsewhere. 9 Here are
presented scaling-theory arguments which represent
the most transparent way to describe the results.

The calculation involves two distinct steps and even
two different regularizations, i.e. , ways of taking
boundary conditions. The first step is to set up a self-
consistent parquet-type approximation for X(h),
where h = (1+ —,

'
p J)gp, aII is the Zeeman energy in-

eluding the O(J) term. Included are many vertex
corrections. The result is a scaling equation which is
solved to give the low-field, strong-coupling, scale
X(h =0) =47r To. The regularization used here is the
standard one, i.e. , I/X 0 before s 0, where s is
the infinitesimal included in the frequency (coo+is).
This amounts to specification of outgoing waves as the
boundary condition. The second step is the calculation
of the conduction-electron scattering matrix. It is
desired to obtain the quasiparticle energies directly.
As is well known, exact eigenstates result if the order
of the above limits is interchanged, i.e. , s 0 then
I/tV 0. The associated boundary condition specifies
standing waves. However, usually this causes the
scattering matrix to become highly singular with singu-
larities separated by 2D/X the separation between en-
ergy levels. Here, for states close to the Fermi energy
eF, this problem does not arise. This can be anticipat-
ed from Nozieres's discussion6 of the ground state.
The conduction electrons are excluded from the "cen-
tral cell. " This results in the phase shift n/2. The
remaining scattering is weak and involves ineIastic
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scattering via an excited (triplet) state of the impurity.
Since the intermediate state involves the energy
separation between the triplet and singlet there are no
singularities until this energy is exceeded.

The conduction-electron scattering matrix is con-
structed with the same parquet-type approximation
and the same scaling equation results; however, now
reflecting the different boundary condition, physical
quantities are related to the r matrix rather than the
usual t matrix. As is well known, the former real
quantity is not given by the imaginary part of the latter
but rather new real solutions of the scaling equation
are needed. The actual procedure followed illustrates
the beauty of the scaling approach. Given first the en-
ergy scale 4m To obtained from the first part of the cal-
culation and a second boundary condition (see below),
the low-energy, small-field results follow by scaling
from a small to a larger cutoff, i.e. , the conventional
scaling direction is reversed. Specifically, one scales
from zero conduction-electron cutoff to some finite
energy e. A given diagram has, say, n renormalized
vertices, each of order unity, and n —1 conduction-
electron lines. However, each intermediate state con-
tains the impurity self-energy —4m. To and hence each
conduction-electron integration introduces a small fac-
tor e/4nTO, i..e. , the diagram is of order (e/47r To)"
This ability to perform systematic expansions about
the strong fixed point is an important methodological
advance which can be extended to the corresponding
lattice problems. Given this series for the quasiparticle
energies, the susceptibility, specific heat, and phase
shift are easily calculated.

The present scaling formalism differs from that of
Abrikosov and Migdal2 because of a different choice of
"invariant charge. " It is this different choice which
makes the problem tractable by diagrammatic
methods.

The development can be related to the poor man' s

scaling technique; see Ref. 3. Consider the diagrams
shown in Fig. 1. They are scaled with the magnetic
field as the cutoff, i.e., the change dX in the diagram
is calculated as the field is reduced by dh. Taking such
a derivative amounts to restricting the conduction-
electron line which links the ends to lie in the interval
h/2 h/2+ dh/2 or —h/2 —h/2 —dh/2. What is
left is the effective conduction-electron —impurity in-
teraction vertex denoted by g:

or

(X—h)d X/dh + (dX/dh) =0 (3)

which is the new scaling equation and central result. It
is a universal scaling law for X as a function of h. As
defined, X(h) is the value of the two-particle self-

A second derivative forces two lines to lie in these
intervals and the result can be represented by a single
bubble diagram with renormalized vertices at both
ends as illustrated in Fig. 2. Because of the thermal
factors 1 —nk and n„., k lies in the first and k' in the
second interval. Thus with bare impurity lines one has

d X/dh = 2g /h

Here g is defined with a prefactor such that g = —,
'

p J in
the extreme weak-coupling limit. With Eq. (2) the
scaling equation takes the familiar poor man's form:

dg/dh = 2g2/h.

The principal innovation is to make this calculation
self-consistent. Because of the two-particle nature of
the calculation and the existence of vertex corrections,
this step is complicated to execute. However, the
result is simple:

d2X/dh2 = —2g2/ [X( h ) —h ],

LAX'

w3
FIG. 1. The self-energy for the transverse susceptibility. The wavy lines correspond to the impurity propagators; the straight

lines are the conduction-electron equivalent. See Refs. 8 and 9.
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FIG. 2. The second-order scaling diagram. Dashed
conduction-electron lines are restricted to the intervals of
width dh and the large circles represent renormalized ver-
tices.

( —,
' ) [I/g+ lng]+ ln[(X —h)/K] = 0, (Sa)

where the integration constant (and energy scale) is

K = —2Detl )p J/2( i exp(1/pJ). (5b)

The factor e'i~, part of W', appears because of the
redefinition h (1+—,

'
p J)h which was needed to ac-

count correctly for the 0 (J) terms.
The result of integrating (5) is not very useful. In-

stead, the special properties of (3) are used. It is in-

energy on energy shell.
The sign of this quantity in the denominator of the

right-hand side of the first line of (3) looks wrong.
One might expect the relevant intermediate-state ener-
gy to be lt +X(h). This is not the case because with
the relevant, i.e., zero-frequency, argument only the
longitudinal self-energy contributes to this inter-
mediate-state energy which acts as the cutoff. This is
equal in magnitude to X except that it contains no
0(J) term and a careful accounting of these first-
order terms is required. It is easily checked, with the
modification h (1+—,

'
p J)h, that the next to leading

0 (J3) terms are correctly given. This scaling equation
leads to an energy scale which contains the prefactor

~ p J
~

tl, indicating that it accounts correctly for the
next to leading divergence in all orders [see Eq. (5b)
below].

With the substitution y = ln[(X —h )/D ], (3) can be
written as

(dg/dy) = (1/2) g'/(1 —g),
which agrees with the usual approach2 for g (( 1.

Equation (4) is integrated and matched to the
relevant asymptotic expansion

pJ/(I+ —,
' pJ)+ (pJ) [ln(h/2D)+in. /2)+. . .

for large h. The result is

variant to the transformation X X+a and
h A+a. The quantity a is equivalent to the second
integration constant.

It should be noted that the asymptotic, h ))K,
solution for g is given directly by (5) by dropping X. It
follows that the second integration constant a cannot
be determined by matching solutions to such perturba-
tive expansions.

A given a is equivalent to fixing the value of g for
lt = 0: This value of g is determined by requiring X(h)
to reflect invariance to time reversal. First one notes
that relaxation eventually involves the production of
particle-hole pairs and a phase-space volume which is
proportional to h. It must be that Im(XI =0 for the
long-time limit, 6 =0, i.e., X is real. If X is to reflect
time-reversal symmetry the real part must be of the
form a+ bh, i.e., {RedX/dhJ =0 for it =0. This
gives g = 2i/m. for h = 0 and

X = 4m. To = ( err ) l D ( pJ
~ exp I1/ ( pJ

~
).

The second m'i component of W'/m. appears with this
step.

The nature of the conduction-electron states near
the Fermi surface are a little unusual. The physics
which emerges from the analysis9 has the following
features: (i) The impurity ground state is a singlet,
~S), with the gap 4m. To separating it from the triplet
states, ~ T) (see below). (ii) As discussed in the
second paragraph after (1), there is an effective con-
servation principle which implies, in the strong limit,
that there is only mixing of conduction-electron states
which lie close to the Fermi surface with ones outside
a region of width 4m To about the Fermi surface.

The "self-energy, " or energy shift, associated with
the quasiparticle states is calculated by evaluating the
poles of the scattering (r) matrix. As would be ex-
pected, the effective vertices are again given by
g= dX/dh, where X obeys the scaling equation (4).
However, for the reasons already stated, the required
solutions are real and different from that obtained
above. The JS s interaction only has matrix elements
which connect the singlet ~ S) to the triplet ~ T) .
There remains a multitude of processes. A scattering
process which involves the states

~ S) to
~ T) and back

to ~S) has an associated minimum intermediate-state
energy 4m To, i.e., the separation between ~S) and

~ T). The corresponding contribution is clearly not
singular on the small scale 2D/N. However, the pro-
cess (S), (T), (S), ~T), and )S) would involve, in
the middle ~S) state, energies within —2D/N of the
ground state and is singular on this scale. However,
such contributions are negligible since one finds9 that
the integration corresponding to the

~ T) state, first,
involves a minimum energy difference of 47r To and,
second, by particle-hole symmetry, is symmetric rela-
tive to the Fermi energy. Such integrals involve only
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band-edge effects and introduce factors of e/D for
each i T) intermediate state. Here e denotes the
quasiparticle energy of interest. It is found, 9 in the
strong-coupling limit, that one needs account only for
processes which correspond to a contribution propor-
tional to g. Thus, for a fixed total spin a typical result
for the quasiparticle "self-energy, " in the strong limit,
1S

o-~(e„~) = (I/2pX)g(e„~ —o-h).

There are, in fact, two branches for the vertex func-
tion, i.e. , g' associated with spin-up and g with spin-
down electrons with energies ek ( e~. This is easy to
see from simple considerations: The finite value of X
for h = 0 has an immediate and very strong conse-
quence. Directly, the double degeneracy of the impur-
ity in the absence of interactions, in zero field, is lift-
ed. This leaves the ground state of the impurity nonde-
generate. If it is to satisfy time-reversal symmetry,
this state must also be a spin singlet. (For the fer-
romagnetic problem X is zero for h = 0 and the mo-
ment is not compensated. The S) —,

' problem can be
understood in a similar way. )

The compensation of the impurity is then reflected
by strong restrictions on g and g". From Eq. (7), the
phase shifts of the up and down quasiparticles are pro-
portional to the effective vertices, i.e. , &I/~=g'/2
and 81/m =g/2. The problem reduces to a spin-
dependent scattering problem and Friedel's sum rule
can be applied to each scattering channel.

The ground state is arrived at by decreasing the field
h from a large value such that in the weak limit the im-
purity spin is fixed in a near eigenstate iS, ) . Since the
impurity is neutral the net phase shift must be zero.
This is reflected by a condition g+g'=0, i.e., the
phase shifts for the two spin channels are equal but op-
posite. The relevant value of g is then dictated by
Friedel's sum rule and the absence of a moment, i.e.,

The same result is obtained by time-reversal require-
ments in the full report of this work. 9

For h =0, X is real and given by (6). It corresponds
to the energy separation between the impurity states

i S) and i T) . Given that this is a physically significant
energy, it must be independent of the regularization.
Then (3), (6), (7), and (8) give the desired expansion
about the strong-coupling fixed point:

T = ipJi' (D/4)exp(1/p J). (10)

The present method therefore reproduces Wilson's
result for the crossover ratio W'= (TH/Tp) = (n/e)'i
or, with the known result for (TH/TK), his result for
(m Tp/TK).
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ekl =E
kt + (I/2pX)(1 ski/2~Tp+. . .).

Here the equivalence of the phase shifts +m/2 has
been used. This expression is of the same form as is
given by Nozieres's model6; it corresponds to a phase
shift hp=m. /2, i.e. , the unitarity limit, a susceptibility
X=ju, a2/m Tp, and a specific heat such that R = [(b,X/
x)/(~C„/C„)] =2.

In order to calculate the crossover ratio, W', it is
necessary to evaluate the high-field scale energy. The
relevant quantity is the effective exchange g= ( —,

' )
x ln(H/TH) in a large field, ignoring band edg-e effects.
The result, using h = 20, 5 is
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