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The importance of three-dimensional effects in the electronic structure of the quasi two-
dimensional layered crystal 1T-TiSe2 is demonstrated by means of high-resolution angle-resolved
photoemission excited by synchrotron radiation. By resolving the spin-orbit splitting of the upper
Se-4p valence band in I A we found strong evidence for hole states at I . The overlap ((120 meV)
between these states and the Ti-3d states measured exactly at I and L, respectively, is much small-
er than previously suggested and is discussed in relation to the structural phase transition below
T, =200 K.

PACS numbers: 79.60.Eq. 71.25.Tn, 71.70.—d

Layered transition-metal dichalcogenides in the 1T
polytype as well as their intercalates exhibit interesting
physical properties concerning conductivity, Hall ef-
fect, specific heat, and their temperature dependence.
Because of their atomic components one finds metal-
lic, semimetallic, or semiconducting behavior, and
transitions between these types as well as structural
phase transitions in special temperature regions. '2

Although recent experimental and theoretical stud-
ies on crystal and electronic structure reveal a good
overall understanding of these materials, there
remains the long-standing question of whether the
stoichiometric Ti-derived compounds form semimetals
or indirect semiconductors at room temperature:
TiTe2 was shown to form a semimetal with an overlap
of about 0.6 eV between the top of the valence p bands
at the Brillouin zone (BZ) center and the d conduction
band minimum at the BZ boundary. 3 For TiS2 the
most accepted view now is that it is an extrinsic semi-
conductor4 5 with an indirect gap of a few tenths of an
electronvolt. Its metallic behavior observed in trans-
port properties can be explained by excess Ti.

The most important experimental and theoretical
challenge is TiSe2 with its position between TiTe2 and
Ti$2. Since selenium is less electronegative than sul-
fur it is expected that the band gap in TiSe2 is smaller
or even vanishes, tending to semimetallic behavior.
This is supported by a positive Hall coefficient and
thermopower, 6 the pressure dependence of the Hall
coefficient, and trends in the optical spectra. On the
other hand, band-structure calculations give different
results as regards the gap and the values for the over-
lap, " and relativistic corrections, in particular the
spin-orbit splitting in the vicinity of the Fermi level
(EF), are expected to play a significant role in materi-
als containing Se."

The theoretical results concerning the band struc-
ture can be directly tested by high-resolution angle-
resolved photoemission spectroscopy (ARPES). Pre-
vious ARPES works'2 '4 indicate values for the band
overlap that vary between 0.18 and 0.5 eV, but no
direct evidence for p-like hole states at I . First, it has

to be noted that in these investigations, with the pho-
ton energies used, the I and the L points in the BZ
have not been investigated together which is absolute-
ly necessary to understand the delicate overlap. This
means that three-dimensional (k~) effects have not
been properly taken into account. For the empty d
states above EF the existence of such interlayer in-
teraction has recently been shown with use of
inverse-photoemission techniques. ' Second, in all of
these investigations the energy resolution was quite
poor ( & 200 meV), which makes a distinct conclusion
questionable especially for the complicated case of
TiSe2. The importance of high energy resolution has
recently been demonstrated for the low-temperature
charge-density-wave phase of TiSe2. ' In a recent pho-
toemission study'7 a semiconducting gap was derived
from the experimental results which contradicts our
findings especially concerning the p and d band
behavior near EF. Apparently these data were not tak-
en with the resolution claimed so that the very impor-
tant spin-orbit splitting of the upper Se-4p valence
band was not resolved, and the data were taken at
electron-emission angles which made a correct locali-
zation of the I and A points impossible.

In this Letter, we report on the first three-
dimensional (kt) analysis of the electronic valence-
band structure of TiSe2 in the I A direction down to 6
eV below EF using ARPES with high energy and
momentum resolution combined with synchrotron ra-
diation. A number of important results are obtained:
Interlayer interaction is essential for the Se-based
valence bands. For a p, -type Se band we find a strong
dispersion up to 1.8 eV along the I"3 direction. The
weak but measurable dispersion of the upper spin-
orbit-split p-valence band causes the band to cross
through the Fermi energy near I . This proves the ex-
istence of holes at I .

The preparation and characterization of the TiSe2
single crystals with the best obtainable stoichiometry is
described in detail elsewhere. ' The photoemission
spectra were taken with synchrotron radiation from the
DORIS II storage ring at HASYLAB in Hamburg in
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the region 8 eV(Ace & 30 eV. The monochromator
and beam line are described elsewhere. 's'9 The elec-
trons were detected by use of a 180' spherical analyzer
mounted on a two-axis goniometer. The measure-
ments were performed with an overall energy resolu-
tion of 70 meV & b E ( 100 meV and an angular reso-
lution of +0.5'.

Photon-energy —dependent photoemission spectra
were taken in normal emission (k~~ =0+0.01 A '),
providing information along the I A direction of the
BZ perpendicular to the layers and along ML at the BZ
boundary. The resulting band structure for I A is
shown in Fig. 1. The bands are attributed to Se-
4p —derived bonding states. Three of them, at binding
energies of about 0.1, 3, and 5 eV, show only a small
dispersion, whereas one band strongly disperses
between 0.35 and 2.15 eV. The latter state obviously
has significant three-dimensional character. The value
for kt was calculated under the assumption of direct
k-conserving transitions and of free-electron-like final
states. By assigning the minimum and maximum in
the binding energy of the strong dispersive band
(I A ) to I' (A. =950 A) and A (A. =565 A),
respectively, in accordance with all band-structure cal-
culations, s " we derive an inner potential of Vq=10
eV. This value is consistent with that used in the
analysis of inverse-photoemission'5 and LEED data. 20

The two bands in Fig. 1 at about 0.1 eV (its spin-orbit
splitting is not drawn and will be discussed later) and
around 3 eV which show only weak dispersion can be
attributed to the I 3 A3 and I 3+A3+ bands, respective-
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FIG. I. Comparison between the experimental (asterisks)
and calculated band structure (solid lines) (Ref. 9) for the
1 3 direction. kq was calculated with use of an inner poten-
tial of' 10 eV.

ly. The points between 4 and 5 eV correspond to the
I't+At+ band. It is split into two components which
can be explained by a coupling with two final states
with small damping as suggested by LEED-type pho-
toemission calculations. 20 The points at 1 eV around A
and 1.5 eV around I associated with weak structures in
the spectra are not explainable in a direct-transition
model and have no counterpart in the calculations.
Since they not sensitive to adsorbates they canot be at-
tributed to surface states. 2'

The comparison of the experimental results con-
cerning the number of p bands, their binding energies,
and dispersions with band-structure calculationss "
yields the best overall agreement with the local-density
results of Zunger and Freeman9 (see Fig. 1). Howev-
er, important differences are obvious. In particular, at
A the strongly dispersing p, -type band is calculated to
lie about 1 eV higher in binding energy, yielding a
much larger theoretical dispersion. Thus the interlayer
interaction is overestimated in this calculation. Like-
wise, the dispersion of the uppermost p band
(I 3 A 3 ) is somewhat smaller than calculated. For
this band we found a weak dispersion of about 80 meV
which is of crucial relevance for the electronic charac-
ter of TiSe2.

In Fig. 2 a series of normal-emission spectra are
shown for energies close to EF as a function of photon
energy. The spin-orbit splitting of the uppermost p
band in the I A direction is observed for the first time.
The experimental value of 200 meV is taken from the
lower energy distribution curves (EDC's) (X & 720 A)
and is to be compared to the calculated value of 290
meV. " The upper spin-orbit component which ap-
pears as a clear peak in the spectra around the A point
disappears almost completely around I . In addition
the slope of the emission cutoff at EF increases from A
to I and is finally determined by the Fermi-Dirac dis-
tribution at room temperature around I'. This demon-
strates that the upper spin-orbit component crosses the
Fermi level between I and A, giving the first direct
experimental evidence for the existence of hole states
at I in TiSe2 by photoemission. The spectra given by
Chen et al. '3 from which the existence of holes around
I' was derived are not consistent with other measure-
ments. t2'~'6 Previous inverse-photoemssion experi-
ments'5 22 did not succeed in detecting the hole states
because of limited experimental resolution.

In order to determine the overlap between the occu-
pied uppermost p and the lowest d-derived bands of
TiSeq one has to compare the emission close to EF ex-
actly at I and L as suggested by all band-structure cal-
culations. s " In Fig. 3 the lower spectrum shows the
upper p bands at I" (from Fig. 2) and the upper spec-
trum shows the emission from the Ti-3d —type band at
L. In a naive way one would take the maxima of both
peaks in the spectra to determine the overlap, which
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FIG. 3. EDC's taken exactly at I and J in the BZ show-
ing the overlap of the Ti-3d band at I and the Se-4p band at
I.
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FIG. 2. EDC's taken at normal emission (8=0 +0.5')
for the I'A direction with use of high resolution (d, E = 70
meV). Spectra are shown for 12 eV (tee (28 eV and
scaled with respect to the absolute maxima. The two peaks
just below the Fermi level show the spin-orbit splitting of
the I 3 A3 valence band. The strongly dispersive peak be-
longs to the I 2 A2 band.

would yield a value of about 20 meV. However, our
high-resolution spectra show that the emission cutoff
is clearly determined by the Fermi-Dirac distribution,
not seen in the results of Ref. 17. Therefore, a more
careful analysis is necessary: (i) From the experimen-
tally determined spin-orbit splitting of 200 meV at 3 it
follows, by addition of this value to the lower spin-
orbit component at I, that the center of the upper
component at I coincides with EF within 10 meV,
under the assumption that the splitting is constant
along I A." Calculations in which the Fermi energy is
shifted through a symmetric band profile in order to
understand its asymmetric behavior and the experi-
mental observation of the Fermi-Dirac cutoff at I (see
Fig. 3) indicate that the center of the band could be lo-
cated slightly (~50 meV) above EF around I'. This
would be in line with the larger theoretical value for
the spin-orbit splitting. " (ii) The maximum of the
emission associated with the d band at L is located at
about 70 meV below EF. The accurate binding energy

of the d band is difficult to determine because of its
asymmetric profile. 23 Application of an energy resolu-
tion down to 30 meV yields the same profile. Thus
the center of the d band can be closer to EF than the
maximum of the d emission shown in Fig. 3, but not
more than the half-width of the Fermi-Dirac distribu-
tion.

From the upper and lower limits of the p and d band
positions given in the above analysis we always obtain
a small positive overlap with an upper limit of 120
meV, taking into account the uncertainties of the
analysis. A more precise value would require the de-
tailed knowledge of the photoemission profile of a
band located very close to E„, including momentum
(ki) broadening and other many-electron effects.
The overlap of the two bands is very small, contrary to
previous ARPES works'2 '4 and also to the most re-
cent work'7 where a semiconducting gap is obtained.
All of these studies apparently suffered from poor an-
gle and energy resolution.

In conclusion, our results show that in order to
understand the peculiar electronic properties of 1T-
TiSe2 it is necessary to perform photoemission studies
with high angle and energy resolution using synchro-
tron radiation combined with high absolute accuracy.
Three-dimensional effects are extremely important
even for these layered materials. We have observed a
critical overlap of p and d states close to E„, character-
izing TiSe2 as a semimetal. Hole states are found for
the first time at the 1 point by examination of the kj
behavior of the upper spin-orbit split Se-p band which
crosses EF. The investigations show that the center of
this band at I does not lie more than 50 meV above
EF, indicating that the number of holes is very small.
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This explains why previous measurements, including
inverse-photoemission studies, '5 ~2 did not detect
these states with the limited resolution applied. The
small density of hole states at I' also favors electron-
phonon rather than electron-hole interaction as the
driving force for the structural phase transition of
TiSe2 below 200 K, in accordance with studies of the
electronic structure in the low-temperature phase. '6
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