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Dynamical Phase Transitions in Hierarchical Structures
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%e study diffusion in the presence of a hierarchical set of barriers. %e find a phase transition in
the dynamics from ordinary to anomalous diffusion as a parameter controlling the relative barrier
heights is varied. Similar behavior is found in suitably defined random systems. Possible connec-
tions to glassy dynamics are discussed.
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The problem of stochastic motion in the presence of
a hierarchical array of barriers (and associated transi-
tion rates) is of considerable cross-disciplinary interest.
Anomalous relaxation, observed in a wide range of
physical phenomena, ' can be explained in terms of
hierarchically constrained dynamics. In particular, re-
laxation in spin-glasses can be interpreted in terms of
stochastic motion (in phase space) with a hierarchical
distribution of (free energy) barriers. 2 Random-field
Ising magnets also exhibit anomalous relaxation. 3

Similar problems are encountered in the dynamics of
macromolecules, early evolutionary processes, 5 and
possibly, computing architectures. 6

Previous studies of stochastic motion in the pres-
ence of a hierarchical set of barriers concentrated on
understanding the anomalous dynamics produced by
various rules that determine the hierarchy. ' In what
follows we report observation of a phase transition in
the dynamics, a from normal to anomalous behavior.
Our model is that of hopping on a one-dimensional
chain, with hierarchically placed barriers, as pictured in
Fig. 1(a). Using a renormalization-group approach, we
found that a transition occurs as a parameter R, the ra-
tio between barriers that belong to two successive lev-
els in the hierarchical structure, is varied. We find for
the long-time autocorrelation function Po(t),

[D (R) t]'l',
Po(t)- --(8) 0(R(R (1)

The diffusion constant8 D(R) vanishes linearly as
R R,+. Anomalous diffusion, characterized by a
continuously varying exponent x(R), is associated
with a line of fixed points of the renormalization
group. We relate our work to previous studies of one-
dimensional hopping in the presence of random bar-
riers. 8 9 We find that for the two problems, of ran-
domly and hierarchically distributed barriers, exactly
the same results are obtained, provided that the distri-
butions of barrier heights are the same.

Our model, ' recently analyzed by Hubermann and
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FICr. 1. (a) Hierarchical barrier structure. The height of a
barrier is inversely proportional to the transition rate. The
largest rate (smallest barrier) is equal to 1. The other rates
are given by R' (0 ~ R ~ 1, l integer), where l denotes the
level of the hierarchy, as illustrated. (b) Schematic represen-
tation of eigenvalues of the master equation (2) for systems
of size 2". All eigenvalues of a system of size 2" ' remain
eigenvalues of the system of size 2". An additional eigen-
value splits off from each of these old ones by an amount
0(R"-'/2"-')

Kerszberg, 7 consists of a linear chain of sites,
k =1,2, . . . , 2". A particle can hop from site k to
sites k +1 with transition rates 8'kk+& = Wk+~ k. The
probability of finding the particle at time t at site k is
Pk(t). The Laplace-transformed function Pk(A. ) satis-
fies the eigenvalue equations

~Pk ~k, k+1(Pk+1 Pk)

2176 1985 The American Physical Society



VoLvME 55, NUMBER 20 PHYSICAL REVIEW LETTERS 11 NovEMaER 1985

where the rates Wzk+& are assigned hierarchically as
shown in Fig. 1(a) (the transition rate is the inverse of
the barrier height):

if for all I ~ m,

k(mod2') =0
Our results will be stated in terms of the autocorrela-
tion function Po(t) which measures the probability for
a particle to be found at time t at the same site it start-
ed from at time t =0. In terms of the density of states
[of eigenvalues of Eq. (2) ], g (A. ), we have

P, (t) =, d) e "g(&). (3)

Since the problem involves a hierarchy of time
scales and has a self-similar structure, one expects an
interpretation within the renormalization-group con-
text to be both possible and useful. Regarding R, the
ratio of transition rates from one level of the hierarchy
to the next, as the scaling parameter of our
renormalization-group transformation, we compare a
system S of size 2" at ratio R to one S' of size 2" ' at
ratio R'. A matching condition, R'=p(R), is deter-
mined by the requirement that the low-lying eigen-
values A.

' of S' are related to those A. of S by a simple
scale factor X'(R') = n(R) A. (R). Such a condition as-
sures that the density of states g(A. ) for the two sys-
tems S and S' will be proportional in the limit n

and hence that Po(t) will have the same long-time
behavior. Our results will be stated in terms of these
two functions, n(R) and p(R), which provide a com-
plete determination of long-time properties. In terms
of these functions, a recursion relation for the density
of states" is determined,

g(A. ,R) = [ (R)/2]g(n(R)Z, P(R)). (4)
We first consider a simple decimation scheme which
can be implemented about the points R =0 and 1.
These results will suffice to indicate the existence of a
phase transition. We extend the results to higher or-
der in R by perturbation theory. For general R, we
use a numerical procedure similar to that introduced
by Sarker'2 for quantum Hamiltonians. Within this
numerical scheme, we will be able to check explicitly
the consistency of our assumption that R is the only
relevant sealing variable.

To perform the decimation calculation, we note that
the master equation (2) couples only odd-numbered
sites to even ones and vice versa. One can thus solve
for the odd sites in terms of the even and write an ef-
fective master equation for the even sites alone. " The
goal then is to recast this new master equation for half
the number sites in the same form as the original
problem. Normalizing the rates in the new effective
master equation such that the largest is again 1, one
finds to lowest order in R that the transition rates

remain hierarchical with ratio R'=R, and that if X is
an eigenvalue of the original problem, A.

'= (2/R)A. is
an eigenvalue of the decimated one. Thus P(R) =R,
n(R) =2/R, and the decimation calculation yields a
line of fixed points at small R. Using the recursion re-
lation for the density of states (4), we find
g (&,R ) = ( I/R )g ( (2/R ) A. ,R ), which may be solved
to give g(A. ,R) —A. ~, where y= —lnR/(ln2 —lnR).
The autocorrelation function is then

P, (t) —t ",

where

x = 1 —y = ln2/(/n2 —lnR).

This is identical to the results of Huberman and
Kerszberg. A similar calculation, done to lowest or-
der in 1 —R yields the results R'=P(R) =~R and
n(R ) = 4/~R. In this case, under successive decima-
tions R iterates to R =1, the equal-barrier model.
Thus for R near 1 we expect g(A. ,R) —A.

' ~ and
Po( T) —t', the ordinary diffusion result.

These simple decimation calculations indicate that
the line of fixed points, responsible for the anomalous
diffusion found by Huberman and Kerszbert7 at small
R, ends at some 0 (R, & 1, above which ordinary dif-
fusion occurs. However, an alternative scenario is also
possible; the R &(1 calculation could indicate that
R =0 is marginally unstable, with no line of fixed
points and no transition. To resolve this, a higher than
first-order calculation is needed. However, to next or-
der in R or 1 —R, the decimation calculation produces
nonhierarchical couplings. Thus to extend the results
to higher order, another procedure is necessary. If
A.0=0, A. t, and A. 2 are the lowest eigenvalues of a sys-
tem of size 2" and XO=O, kt, and A. z are the lowest
eigenvalues of a system of size 2" ', then the match-
ing condition A. '(R') = n (R ) A. (R ) can be rephrased in
terms of the ratio y=A. t/A. 2 as y'(R') =y(R). Thus
we can construct a p function by matching y for finite
systems, 2" to 2" '. If the scaling assumption is
correct, p should approach a unique function as
n ~, and the same P which is constructed by com-
parison of Xt/X2 should also lead to matching for all
low-lying ratios A. t/X;. We have first implemented this
procedure by calculating the lowest eigenvalues of (2)
with ordinary Rayleigh-Schrodinger perturbation
theory in R. The structure of the eigenvalue spectrum
is indicated in Fig. 1(b). Here we will state the main
results; details of the calculation will be presented else-
where. ' In going from a matrix of size 2" ' to 2", all
the eigenvalues of the 2" ' system remain eigenvalues
of the 2" system, and new eigenvalues are created
which are split off from the old by a positive amount
O(R" /2" 2). Thus the lowest nonzero eigenvalue
XJ of size 2" ' is the second lowest nonzero eigen-
value Xq of size 2". In matching y we find R'= R and
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n(R) =2/R to all orders in perturbation, as n
Thus the simple decimation procedure produced the
exact answer to all orders in A.

The ending of the line of fixed points at small R is
caused by the breakdown of perturbation theory, and
one must go to numerical methods. We have numeri-
cally computed the low-lying eigenvalues of systems
with up to 2'5 sites, and in Fig. 2 we plot the results for
y= &t/&z «« =9, . . . , 15. Our computational algo-
rithm consists of a combination of the negative eigen-
value theorem'4 with bisection and was found to be
very efficient and stable. The limiting (n ~) curve
(dashed lines in Fig. 2) for y is the line y(R) =R/2
for 0~ R ~ —, which joins continuously onto the line

y(R) = —,
' for —,

' ~ R ~ 1. Thus the transition
between anomalous and ordinary diffusion is seen to
occur at R, = —,'. For R ~ —,', we expect perturbation
theory to hold and give a line of fixed points. In this
case we know that A. t of the system of size 2" ' is
equal to A.z of the system with size 2", and since
R =R', we see that y=Xt/X2=&t/&I = I/o(R) =R/2
as expected. For —,

' ~ R ~ 1, the ratio y is just that of
the equal-barrier R =1 model, and so we expect the
long-time behavior to be ordinary diffusion. From
comparing curves of y„ to y„ I for finite n, we can
construct the P function R'=P(R) by matching
y„(R)=y„ l(R') as discussed above. In Fig. 3 we
plot R' —R =P(R ) from various sizes. As expected,
as n ~, the P function is converging to zero for
0~ R ~ —,', while giving a flow to R =1 for R ~ —,'.
Agreement with the decimation result R'= JR near
R =1 is found. We have checked the P functions of
Fig. 3 for consistency by matching the other low-lying

eigenvalue ratios At/A. , between systems of size 2" and
2" ', and find good agreement. This verifies the
validity of our one-parameter scaling assumption. A
straightforward extension of the above analysis to
hierarchical barrier structures in arbitrary dimension d
will be presented elsewhere'3; again we find R, = —,

'

with x(R) in Eq. (1) being replaced by dx(R).
In principle we can use the recursion relation for the

density of states to derive how the diffusion constant
goes to zero as R —, and how the anomalous

+

diffusion region is approached from above. Combin-
ing Eqs. (3) and (4), we get a recursion relation
for Po ( r), and using the fact that for R ~ —,',
li m„Po(t, P " (R ) ) = Po(t 1) = r t/ we find
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where R„=P(")(R). However, for the problem at
hand, D can be calculated directly as discussed below.

We turn to the related problem of one-dimensional
hopping in the presence of random barriers. s 9 Now
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FIG. 2. Ratio of lowest two nonzero eigenvalues
X„=h.&/X2 vs R for systems of size 2". Full graph shows
results for sizes 2'5 and 29. As n ~ the limiting curve
(dashed lines) is y = R/2 for R (R, = T and y =

4 for

R & R, . Inset shows curves for sizes 2", n = 9, . . . , 15, on
an expanded vertical scale.

FIG. 3. Scaling functions p(R) between systems of size
2" and 2" ', i.e., R'(2" ') =R (2")+p(R), as obtained by
matching y„~(R') =y„(R ) from the curves of Fig. 2.
Curve 15, for example, results from comparison of the sys-
tem of size 2" to one of size 2' . For R (R, =0.5, the
curves converge to zero as n ~, and one has a line of
fixed points. For R, & R ~1, R flows to R =1 under suc-
cessive iterations. Near R = 1, the decimation result
R ' =JR is found.
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the transition rates Wkk+t are independent random
variables taken from a probability distribution f( W).
If we take for f( K the same density of rates as in the
hierarchical model [but now the rates are distributed
randomly along the chain, rather than in the ordered
structure of Fig. I(a)] we have f( W) —8, where
a= 1 —in2/~lnR ~. For such a distribution, Dysons 9

computes the autocorrelation function Po(t) and ob-
tains exactly the same results as in our hierarchical
model. Thus the transition from ordinary to
anomalous diffusion appears to be a more general
property, dependent on the distribution of transition
rates, rather than on the particular hierarchical order-
ing.

Finally, one can compute the diffusion constant
D(R) of Eq. (1) for the region of normal diffusion,
i.e., —, ~ R ~ 1, and in particular, how it vanishes as
R R,+. A very general result'5 yields

for any arrangement of %barriers. For the hierarchica1
case this is just the geometric series 1/D

o (1/2R )". For R ) —, , the series diverges,
and so D =0. This is the region of anomalous dif-
fusion. For R ~ —,', the series converges, and
D = (2/R) (R ——,

' ), going linearly to zero at R, = —,
' .

To conclude, we have demonstrated that a model
with hierarchical barriers undergoes a phase transition
from anomalous to normal diffusion, as a parameter R
is varied. R measures the relative transition rates as-
sociated with successive levels of the hierarchy. Thus
one expects R to be controlled, in systems such as
glasses, by variation of the temperature. Since the
main results depend only on the average inverse tran-
sition rate, the existence of such a transition in the

dynamics does not require a hierarchical spatial ar-
rangement of the barriers. We believe that various
models of statistical mechanics will provide examples
of such a transition and hope that experimental realiza-
tions can also be found.
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