
VOLUME 55, NUMBER 20 PHYSICAL REVIEW LETTERS 11 NOVEMBER 1985

Self-Reflected Wave inside a Very Dense Saturable Absorber
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The numerical solution of the Maxwell-Bloch equations describing the propagation of a plane
monochromatic wave through a saturable absorber shows the appearance of a new kind of reflected
wave generated inside the medium. This new phenomenon is described and its physical origin, re-
lated to the saturation-induced refractive index changes, is discussed.

PACS numbers: 42.65.Gv

The propagation of a laser beam through a nonlinear
medium can display certain characteristic features such
as self-focusing' and self-induced transparency. z In
this Letter a new result concerning the propagation of
a plane monochromatic traveling wave that penetrates
a very dense saturable absorber is presented. I show
now that under appropriate conditions a reflected wave
can be generated well inside the nonlinear medium.
The generation mechanism is not the coupling to other
beams, as in four-wave mixing. It is not a boundary
reflection either. Its origin is due to the saturation-
induced refractive index changes across the absorber.

Two clearly defined regions appear in the study of
the propagation of an intense incident field through a
saturable absorber. In the first region, close to the
boundary, the field saturates the medium and the rela-
tive absorption is not too high. When the decreasing
amplitude of the wave arrives at nonsaturating values,
absorption grows quickly and determines the begin-
ning of the second region, the unsaturated region. In
this Letter I analyze situations —a saturable medium
with a very large absorption coefficient —in which the
pass from one to the other region is accomplished over
less than a wavelength. If the properties of a system
change in such a way, a reflected wave may appear. I
show here, by a numerical calculation, the existence of
this reflected wave generated inside the nonlinear
medium. To employ a standard denomination it will
be called a self-reflected wave.

The study of the laser-absorber interaction is made
here in the most simple case where this phenomenon
occurs. The field is considered as a plane mono-
chromatic wave, varying only along the z axis. It can
be written in the form E (z) exp( —i toL t); I do not try
to give an explicit spatial dependence to the field. On
the other hand, a great density of homogeneously
broadened two-level systems constitute the absorbing
medium. I assume that it fills completely the half-
space z «0, and that every two-level absorber acts
completely independent from the others.

The propagation of the field is described by the
Maxwell-Bloch equations. The steady-state solution

is given by

yD = —(t&/t)(EP' E'P) +—yX,

2(y —ta)P = (t&/t)DE,

d E/dz = —ko (E+4vrp, P).
(2)

The substitution of (I), (2), and (4) into the propaga-
tion Eq. (3) gives

d I'

Jz

t

k2F I+ 'y y
y +b, 2+4y FF' (5)

where

is a dimensionless parameter that accounts for the
strength of the coupling with the field and for the den-
sity of absorbers. Obviously, Eq. (5) describes the
field propagation only inside the medium (i.e. , for
z ~0). For z & 0 the field will be a solution of the
vacuum wave equation [the same as (5) but with
/=0]. At this point it is common to introduce the
slowly varying envelope approximation. Nevertheless,
given the nature of the effects we are interested in, we
will not make this approximation and we will solve nu-
merically the second-order differential Eq. (5).

As boundary conditions of (5) at z = 0 we take F and

Here p, is the transition dipole moment, taken to be
parallel to the field; p, J' is the polarization; D is the
population difference; % is the density of absorbers;
ko=toL/c is the field wave number, in vacuum; and
A=coL —coT is the detuning, mT being the transition
frequency. To simplify, only a homogeneous relaxa-
tion rate y is considered. This relaxation parameter
will be considered as constant regardless of the field
intensity, although this assumption has been recently
questioned. 5

I introduce a dimensionless function, proportional to
the field at each point z, defined by

F(z) = p,E(z)/2ty.
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FIG. 2. Approximate values of the forward and self-
reflected field amplitudes inside the absorber (solid lines).
Broken lines indicate the region where these two com-
ponents are undefined. This figure corresponds to the same
parameters as in Fig. 1(c).

FIG. 3. Schematic representation of the phenomenon.
The only thing that we can actually measure is the total re-
flected wave, resulting from the superposition of the wave
reflected at the boundary and the transmitted part of the
self-reflected wave. Obviously, this wave experiences a re-
flection at the z = 0 boundary (induced by the boundary it-

self) and contributes to some extent to the forward field, but
for simplicity this is not indicated in the figure.

shown in Fig. 2. %hen we arrive at the unsaturated
region this kind of fitting is not valid.

It is obvious that a phenomenon like self-reflectivity
cannot be explained at all within the slowly varying en-
velope approximation because there is not any polari-
zation at all that allows the coupling between the for-
ward and backward components of the field.

Up to now we have considered the forward and
self-reflected wave only inside the absorber. To relate
them with the incident and reflected fields outside the
absorber —the only two fields we can actually
measure —we have to take into account the boundary
reflection at z =0. Notice that it is described merely
by (7) and (8) since we do not introduce any reflecting
surface other than the polished face of the absorber
boundary itself. So the forward field can be under-
stood as the superposition of the incident field that
enters the medium plus the reflection of the backward
wave at this plane. The total reflected field, I'tt, calcu-
lated by (7) and (8) can be understood as the superpo-
sition of the field reflected by the boundary itself plus
the transmitted part of the self-reflected wave, as
shown schematically in Fig. 3. As will be shown else-
where6 the total reflected intensity exhibits strong
nonlinearities and even bistable loops can appear when
it is plotted versus the input light intensity.

Finally let us point out that to our knowledge this
effect has not been expermentally observed. Perhaps
this is due to the high saturation and absorption need-
ed for its appearance. We think, however, that in cer-

tain situations, like the excitonic resonances or even
the sodium vapor, it could be observed. Another pos-
sible difficulty for its observation is the influence of
other effects neglected here, mainly interactions
between the absorbers, that can strongly modify the
propagation of the field. 7

In conclusion, I have shown that in the theoretically
simple case of the propagation of a plane mono-
chromatic wave through a saturable absorber, a reflect-
ed wave can be generated inside it due to the
saturation-induced refractive index changes.
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