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Self-Reflected Wave inside a Very Dense Saturable Absorber

Luis Roso-Franco

(a)

Departament de Fisica Fonamental, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
(Received 23 July 1985)

The numerical solution of the Maxwell-Bloch equations describing the propagation of a plane
monochromatic wave through a saturable absorber shows the appearance of a new kind of reflected
wave generated inside the medium. This new phenomenon is described and its physical origin, re-
lated to the saturation-induced refractive index changes, is discussed.

PACS numbers: 42.65.Gv

The propagation of a laser beam through a nonlinear
medium can display certain characteristic features such
as self-focusing! and self-induced transparency.? In
this Letter a new result concerning the propagation of
a plane monochromatic traveling wave that penetrates
a very dense saturable absorber is presented. I show
now that under appropriate conditions a reflected wave
can be generated well inside the nonlinear medium.
The generation mechanism is not the coupling to other
beams, as in four-wave mixing. It is not a boundary
reflection either. Its origin is due to the saturation-
induced refractive index changes across the absorber.

Two clearly defined regions appear in the study of
the propagation of an intense incident field through a
saturable absorber.® In the first region, close to the
boundary, the field saturates the medium and the rela-
tive absorption is not too high. When the decreasing
amplitude of the wave arrives at nonsaturating values,
absorption grows quickly and determines the begin-
ning of the second region, the unsaturated region. In
this Letter I analyze situations—a saturable medium
with a very large absorption coefficient—in which the
pass from one to the other region is accomplished over
less than a wavelength. If the properties of a system
change in such a way, a reflected wave may appear. I
show here, by a numerical calculation, the existence of
this reflected wave generated inside the nonlinear
medium. To employ a standard denomination it will
be called a self-reflected wave.

The study of the laser-absorber interaction is made
here in the most simple case where this phenomenon
occurs. The field is considered as a plane mono-
chromatic wave, varying only along the z axis. It can
be written in the form E (z) exp(—iwjt); I do not try
to give an explicit spatial dependence to the field. On
the other hand, a great density of homogeneously
broadened two-level systems constitute the absorbing
medium. I assume that it fills completely the half-
space z =0, and that every two-level absorber acts
completely independent from the others.

The propagation of the field is described by the
Maxwell-Bloch equations.* The steady-state solution

is given by
yD = — (ip/k) (EP*— E*P) +yN, (1)
2(y—iA)P = (ip/k)DE, (2)
d*E/dz*= — k¢ (E +4mwuP). 3)

Here w is the transition dipole moment, taken to be
parallel to the field; wP is the polarization; D is the
population difference; N is the density of absorbers;
ko=w;/c is the field wave number, in vacuum; and
A=w; —wr is the detuning, wy being the transition
frequency. To simplify, only a homogeneous relaxa-
tion rate y is considered. This relaxation parameter
will be considered as constant regardless of the field
intensity, although this assumption has been recently
questioned.®

I introduce a dimensionless function, proportional to
the field at each point z, defined by

F(z)=unE(z)/2%y. 4

The substitution of (1), (2), and (4) into the propaga-
tion Eq. (3) gives

d’F 2 iyi—Ay
=—Kk¢F |1+ , 5)
dz? 0 VT AT+ 4y 2 FE
where
¥ =2mu’N/ry (6)

is a dimensionless parameter that accounts for the
strength of the coupling with the field and for the den-
sity of absorbers. Obviously, Eq. (5) describes the
field propagation only inside the medium (i.e., for
z=0). For z <0 the field will be a solution of the
vacuum wave equation [the same as (5) but with
y=0]. At this point it is common to introduce the
slowly varying envelope approximation. Nevertheless,
given the nature of the effects we are interested in, we
will not make this approximation and we will solve nu-
merically the second-order differential Eq. (5).

As boundary conditions of (5) at z =0 we take F and
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its derivative to be continuous at this plane:
F(0) =F,;+ Fg, @)
dF/dZ(0)=(F1 +FR)fk0, (8)

where the parameters F; and Fy are related to the in-
cident, E;, and reflected, Ey, field complex ampli-
tudes, respectively, by expressions analogous to (4).

Since we are dealing with an absorber and the in-
cident field comes forward from z =0, the only solu-
tions of (5) that will have a physical meaning to us will
be those satisfying |F(z)|— 0 as z — o. Therefore,
we can assume that |F(z)| << 1, at large enough
values of z. The saturation term in (5) is then negligi-
bly small and the wave equation becomes linear. The
solutions of this linear wave equation vanishing at
large values of z are forward propagating waves,

F(z)=F(zy) explikon (z —zy) 1, 9)

n being the complex refractive index,
n?=1+yy(iy—A)/ (y2+A2). (10)

Concerning the numerical computation of the solu-
tions of (5), it is not feasible to start it at the vacuum-
absorber interface since we do not know the value of
the wave reflected at this plane. Instead, our strategy
implies the beginning of the computation at a large
value z(, introducing a small value of the rescaled
field, |F(z¢)| << 1, and of its derivative, ikynF (zq),
according to (9). The calculation of the solution deter-
mined by these starting values has been given by a
simple numerical procedure based on a Taylor expan-
sion up to the sixth order around every computed
point, ending at z=0. From the values of the field,
and its derivative at z=0, Egs. (7) and (8) give the
values of the incident and reflected waves.

To obtain a self-reflected wave the medium must
have a high absorption coefficient, so high that the im-
aginary part of the complex refractive index must be
much greater than the real one. The results to be
shown in this Letter correspond to a particular signifi-
cant case where this wave appears. The wave can also
appear at lower values of the absorption coefficient,
but it always vanishes when the parameter ¢ ap-
proaches unity because in this case, even in resonance,
the real and imaginary parts of the refractive index be-
come similar.

Figure 1 shows the computed values of the field am-
plitude at each point of the absorber, corresponding to
=100 and A = 2.8y, for three different values of the
incident field. According to (10) the complex refrac-
tive index in this case is n =1.00+/5.63. The detun-
ing A has been chosen adequately to work in a purely
absorptive case. When the incident field is low
enough for the linear approximation to be valid, the
field in the absorber is given by (9). Those values of
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¢ and A imply a strong attenuation of the field, as
shown in Fig. 1(a), for F,=6, one of the highest
values of F; where nonlinearities are still nondom-
inant. On increase of the incident field the linear ap-
proximation fails completely and the field inside the
absorber displays two clearly defined regions [Figs.
1(b) and 1(c)]. Next to the boundary there is a region
which presents a node-antinode pattern and corre-
sponds to values of the field that introduce a high
saturation degree. The second region begins as soon
as saturation is not dominant and the field is quickly
absorbed. These two regions correspond to the ones
indicated at the beginning, the saturated region, next
to the boundary, and the unsaturated region.

The high value of the coupling parameter  needed
precludes the use of the slowly varying envelope ap-
proximation in the solution of the wave equation,
since the absorption over a wavelength is not negligi-
ble. We can, however, approximately fit the field in-
side the absorber in the saturated region by a superpo-
sition of two counterpropagating waves of variable am-
plitude. The best fit to the field given in Fig. 1(c) is
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FIG. 1. Spatial profile of the rescaled total amplitude in-
side the absorber, showing clearly the node-antinode struc-
ture that evidences its standing-wave nature. The three fig-
ures correspond to the same absorber (y=100 and
A =2.8y), but to three different values of the incident field
amplitude: (a) F;=6; (b) F;=15; and (c¢) F;=30. Notice
that (a) has both scales enlarged by a factor 10.
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FIG. 2. Approximate values of the forward and self-
reflected field amplitudes inside the absorber (solid lines).
Broken lines indicate the region where these two com-
ponents are undefined. This figure corresponds to the same
parameters as in Fig. 1(c).

shown in Fig. 2. When we arrive at the unsaturated
region this kind of fitting is not valid.

It is obvious that a phenomenon like self-reflectivity
cannot be explained at all within the slowly varying en-
velope approximation because there is not any polari-
zation at all that allows the coupling between the for-
ward and backward components of the field.

Up to now we have considered the forward and
self-reflected wave only inside the absorber. To relate
them with the incident and reflected fields outside the
absorber—the only two fields we can actually
measure—we have to take into account the boundary
reflection at z=0. Notice that it is described merely
by (7) and (8) since we do not introduce any reflecting
surface other than the polished face of the absorber
boundary itself. So the forward field can be under-
stood as the superposition of the incident field that
enters the medium plus the reflection of the backward
wave at this plane. The total reflected field, Fy, calcu-
lated by (7) and (8) can be understood as the superpo-
sition of the field reflected by the boundary itself plus
the transmitted part of the self-reflected wave, as
shown schematically in Fig. 3. As will be shown else-
where® the total reflected intensity exhibits strong
nonlinearities and even bistable loops can appear when
it is plotted versus the input light intensity.

Finally let us point out that to our knowledge this
effect has not been expermentally observed. Perhaps
this is due to the high saturation and absorption need-
ed for its appearance. We think, however, that in cer-
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FIG. 3. Schematic representation of the phenomenon.
The only thing that we can actually measure is the total re-
flected wave, resulting from the superposition of the wave
reflected at the boundary and the transmitted part of the
self-reflected wave. Obviously, this wave experiences a re-
flection at the z =0 boundary (induced by the boundary it-
self) and contributes to some extent to the forward field, but
for simplicity this is not indicated in the figure.

tain situations, like the excitonic resonances or even
the sodium vapor, it could be observed. Another pos-
sible difficulty for its observation is the influence of
other effects neglected here, mainly interactions
between the absorbers, that can strongly modify the
propagation of the field.”

In conclusion, I have shown that in the theoretically
simple case of the propagation of a plane mono-
chromatic wave through a saturable absorber, a reflect-
ed wave can be generated inside it due to the
saturation-induced refractive index changes.
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