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A theory is developed for the hcp-fcc structural phase transition in close-packed metals as a func-
tion of the average electron concentration per atom. It is found that the transition can be continuous
at low temperatures. Ordered polytypic stacking sequences are found near the transition point.
Short-period structures are stabilized by Fermi-surface effects, but long-period structures result
from elastic distortion of the lattice. Unusual ‘‘staircase’” crystallographic data for Mg-based
Friauf-Laves alloys are accounted for successfully and the structure of rare-earth intermetallic al-

loys is discussed.

PACS numbers: 61.50.Ks, 64.60.Cn, 64.70.Kb

Many metals crystallize into structures which can be
described as regular stackings of close-packed triangu-
lar lattice planes.! Each layer can occupy one of three
positions commonly denoted by 4, B, and C. The two
simplest stacking sequences lead to the familiar hexag-
onal close-packed structure (hcp), ABABAB. . ., and
the face-centered cubic structure (fcc), ABCABC. . ..
However, several classes of metals are known? where
the crystal adopts a structure which can be regarded as
a ‘‘compromise’’ between fcc and hcp. A convenient
way to visualize these structures employs an alterna-
tive notation® that labels each plane by the letter 4 if
its nearest neighbors are identically stacked (e.g., B in
ABA) or the letter ¢ if the nearest neighbors differ in
stacking (e.g., B in ABC). One then can imagine an
infinite set of interpolating structures which effect the
transition from hcp to fcc by the systematic introduc-
tion of c¢ stacking faults into the pure hh. . . structure.
A particularly detailed experimental study of this
phenomenon has been carried out by Komura and Ki-
tano* for quench-cooled, magnesium-based, Friauf-
Laves—phase ternary alloys. A summary of their data
is shown in Fig. 1. The vertical axis identifies a crystal
structure by the fraction of 4 layers per stacking direc-
tion repeat unit. The horizontal axis labels the average
number (Z) of valence electrons per atom for the al-
loy in question. The remarkable staircase appearance
of these polytypic data is, at present, without explana-
tion.

The purpose of this Letter is to develop a micro-
scopic theory of the hcp-fcc transition in metals and
show that the appearance of highly modulated struc-
tures is a feature to be expected quite generally. The
physical picture derives from the seminal work of
Hume-Rothery and Raynor® who first identified the
electron concentration as a controlling factor in struc-
tural phase transformations. The simplest argument!®
applied to the present case notes that as the average

valence increases above the fcc stability limit, near
Z =1.67 in Fig. 1, the free-electron Fermi wave vector
increases towards half the magnitude of the second re-
ciprocal lattice vector (g) of the hcp structure in the
stacking direction. Hence, when kg just touches the
Brillouin-zone boundary, electron ‘‘condensation’’ en-
ergy can be gained by a transition to the hcp structure.
A simple extension of this idea would consider that
even if kr does not reach this point some electronic
energy can still be gained by modulating the lattice
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FIG. 1. Crystal structure data for Mg-based ternary alloys
from Ref. 4. The percentage fraction, x, of h stacking layers
is related to / by x =100(1—1//). See text for further dis-
cussion.
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with a wave vector g = g — 2k at the cost of distorting
the hep structure. In the simplest case, this may be ac-
complished by inserting c layer stacking faults separat-
ed by a distance 27/q. The situation is analogous to
the case of a 2kg charge-density-wave lock-in transi-
tion with the c layer playing the role of a discommen-
suration.”

Our inquiry begins with the stability analysis of the
hcp and fcc structures in simple metals performed by
Blandin, Friedel, and Saada® (BFS). These authors
noted that any two layer planes, separated by a dis-
tance z, in a close-packed structure are either precisely
lined up (e.g., A-A) or are shifted with respect to one
another by a fixed distance (e.g., 4-C). Since the two
alternative stackings conserve the crystal volume, the
structural energy difference per unit area between
them, ¢(z), can be computed from the pair potentials
of pseudopotential theory.® Using a point-ion version
of this theory, BFS found an asymptotic expression for
the planar interaction energy difference:

sin(z0/d)

¢(z)=a /)

(D

Here, d is the separation between adjacent planes,
0(Z) is a smooth function of Z (through kg), and the
prefactor, a, sets the Z-dependent energy scale
(~ 100 ergs/cm?). The sinusoidal nature of ¢(z) re-
flects the long-range Friedel oscillations of the
screened ion-ion interaction. Of course, the
phenomenon of Friedel oscillations is much more gen-
eral than rigid-band pseudopotential theory. Hence,
we approximate the true planar potential by Eq. (1)
supplemented by a phase shift 8 and a correction
A¢(2d) to the potential at the shortest structure-
sensitive separation. These two quantities may be
treated as adjustable parameters within calculable
bounds.!?

The total structure-dependent electronic contribu-
tion to the cohesive energy of L rigidly stacked close-
packed layers then is given by

FE 1 S
- _EH—E

Jjl=2

o (li—jld)

X [cos[zg-(n, - n,)]~ 1], ()

where n;=1, 2, or 3 for 4, B, or C layers, respectively.
This is a T =0 one-dimensional three-state Potts
model with long-range interactions for which we seek
the ground-state stacking configuration as a function
of valence. Our analysis of this model will consider
low-energy defects of the uniform ground state and
their mutual interactions.!! We begin in the hcp phase
and introduce a single c¢ fault into the structure. The
chemical potential of this defect can be computed?®

from Eq. (2):
vam 3 ne(2nd) +Ag(24). 3)

n=1
If, following BFS, we ignore the interaction between
stacking faults, the hcp phase becomes unstable when
va becomes negative. For §=A¢(2d) =0 this hap-
pens when 6 is a multiple of 7/2. However, two such
defects actually have an interaction energy ¥ (z) which
is also calculable from Eq. (2):

-2 2 k¢l(m +2k)dl, m even,
Vimd)=] o )

- S k¢l(m +2k)dl, m odd.
k=1

The asymptotic form of the potential can be found us-
ing the Euler-Maclaurin formula. For m even we find
a sin(mo+3)
4  mZsin%0
The oscillatory form of V(z) suggests that two
stacking faults can have an attractive interaction, and
hence the hcp phase can be unstable for small positive
values of y,. If we neglect interactions between ¢
layers, which are greater than nearest neighbors, the
exact Potts expression can be simplified to the energy
of a one-dimensional model ‘‘solid’’ of stacking faults,

V(md) = (m >>1). )

N

EZ%j§1{7A+ V (k1= k) d)), ©)
where k;d is the position of the jth stacking fault and N
is the total number of faults. This class of Hamiltoni-
an is known!! to support a small number of stability in-
tervals separated by first-order discontinuities (‘‘harm-
less staircase’’). Using the asymptotic form of V (z),
we find that Eq. (6) does not yield stability for periodic
defect arrays with stacking fault separation greater than
4d for experimentally realizable values of Z. Shorter-
period structures are most easily studied numerically.!?
We find (Fig. 2) a phase diagram in qualitative agree-
ment with Komura’s: The fcc, 4H, and 9R polytypes
are present.

The polytypes of longer period (6H, 21R, 10H, etc.)
are missing. A clue to their origin is provided by the
fact that there is infinite structural degeneracy right at
the first-order transition points. Consider two short-
period polytypes with defect separations md and
(m +1)d, respectively (e.g., 4H to 9R). Any inter-

mediate structure with mean defect separation
Id(m <! < m +1) has an energy
E,(D=V((m+1)d)—V(imd) +u,/l @)

where

um=ya+m+1)Vimd) —mV((m+1)d).
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FIG. 2. Crystal-structure polytypism using BFS electronic
planar interaction energy. Although the details of the stabil-
ity interval locations and widths is sensitive to the choice of
A¢(2) and 8, the overall first-order staircase structure is
not. Here, A¢(2d) = —0.18a and 8= — «/4.

Note that E,, (/) is independent of | at the phase transi-
tion point: u, =0. Hence, a very small energy can
break this degeneracy and stabilize a longer-period
structure. One source of this energy could be the
direct defect-defect interaction beyond nearest neigh-
bors. Indeed, Kitano, Ohba, and Komura!'? have at-
tempted to reproduce the entire observed structural
sequence by treating each of the ¢ (nd) in the original
Potts expression as independent fitting parameters up
to n = 6. However, we find that their fitted values are
completely inconsistent with any BFS potential.
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We suggest that the structural degeneracy is lifted by
an elastic distortion of the lattice. This identification is
supported by x-ray diffraction data!’ which indicate
that stacking faults of the highly modulated structures
are appreciably ( ~ 1%) displaced from their ideal po-
sitions of z;=k;d. Let u; denote the true position of
the jth fault. The energy cost associated with this ad-
ditional lattice distortion'* can be added to the elec-
tronic energy to yield a Hamiltonian which describes
the transition from /=mto/=m +1:

1

L ﬁé {“m'+%'Vh(ui+l—ﬂh”—bm)2

Jj=1

H, =

+5x(u;—k;d)?) + G,y (8)

In this expression, V,, is a simple combination of the
expansion coefficients of V(z) around z =md and
z=(m+1)d, b}=m(m +1), and « is related to the
velocity of sound along the stacking direction. C,, is a
constant which guarantees that H,, — E,, () as k — .

This model has been studied by Aubry!® for the case
of a fixed number of defects. The stacking structures
which intervene between the short-period /=m and
I=m +1 phases are obtained from an equation of
state:

dU,, (D/dl = —p, (D) + un/l 9

U,, (1) is the internal energy/defect and p,, (/) is an ef-
fective, Z-dependent pressure exerted on the stacking
fault ‘‘solid.”” In general, Eq. (9) admits a set of solu-
tions for each Z near the nominal first-order point.
However, for c-defect densities less than 50%'® in the
stiff-lattice limit (x/V,, >> 1), the right-hand side of
Eq. (9) becomes nearly independent of / and the phase
diagram is obtained readily.!® As illustrated in Fig. 3
(plotted as a function of w,,/mV,, rather than Z),
there is actually a finite stability interval for every ra-

m+3/5

FIG. 3. Crystal structure polytypism taking account of both electronic and elastic contributions to the structural energy for
the transitions from /=m to /=m +1 in Fig. 2. The parameter w,,/mV,, is a smooth function of Z. Longer-period stacking

structures are found in the shaded regions.
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tional fraction / between m and m +1 which implies
that at least a portion of the hcp-fcc transition is a con-
tinuous function of Z.

This ‘‘devil’s staircase arises from the competi-
tion between V(z), which favors u; ,;—u;=b,,, and
the elastic energy, which favors u;,,—u;=md or
(m +1)d. The most stable intervening phase occurs at
I=m ++ and the next most stable at /=m ++ and
I=m +%, etc. Comparing our results with those of
Komura between the 4H and 9R phases, we correctly
obtain the /=, -, 2, and § polytypes (184, 21R,
10H, and 16H). In addition, the / = < polytype (14H)
is seen at higher valence between the short-period 9R
and 8H structures. It would be quite interesting if fur-
ther investigation revealed additional steps in this sys-
tem, although other stacking materials'® may also be
good candidates for study.

An hcp-fce transition sequence is observed in the
rare-earth elemental metals as a function of decreasing
atomic number. Duthie and Pettifor'® identified the
S5d-electron ‘‘valence’ as the parameter which estab-
lished crystal stability among the considered struc-
tures. In the view espoused in this paper, we note that
the asymptotic part of the planar interaction will con-
sist of a sum of terms similar to Eq. (1), one for each
partial wave, phase shifted in accordance with the non-
linear screening of the ion.?’ Neglecting hybridization,
we can define a Fermi wave vector for the 4 electrons
and another for the s electrons, each of which favors a
different configuration of defects. However, the am-
plitude of the / =2 derived Friedel oscillation is much
larger than its s-wave counterpart. The ‘‘d-valence”
analog of Fig. 2 for this case produces precisely the
same phase diagram as obtained in Ref. 19. Long-
period polytypes must be sought in the narrow range
of d count between those represented by the elemental
metals. They are found?! in intermetallic alloys of
rare-earth metals with simple metals.

We would like to thank John Axe for bringing Ref.
4 to our attention, Per Bak for useful discussions, and
Ben Post for instruction in the use of the International
Tables for X-Ray Crystallography.
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