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Inhibited Spontaneous Emission by a Rydberg Atom
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Spontaneous radiation by an atom in a Rydberg state has been inhibited by use of parallel con-
ducting planes to eliminate the vacuum modes at the transition frequency. Spontaneous emission
is observed to "turn off" abruptly at the cutoff frequency of the waveguidelike structure and the
natural lifetime is measured to increase by a factor of at least 20.

PACS numbers: 32.80.—t, 31.60.+b

Spontaneous emission is often regarded as an una-
voidable consequence of the coupling between matter
and space. However, as one of the authors has pointed
out, ' by surrounding the atom with a cavity which
has no modes at the transition frequency, spontaneous
emission can be inhibited or "turned off." Drexhage,
in studies of fluorescence by dye molecules deposited
on a dielectric film over a conducting plane, observed
a decrease of up to 25p/o in the fluorescent decay rate
due to cavitylike effects. Rydberg atoms provide the
opportunity to achieve inhibited emission in mi-
crowave cavities. Vaidyanathan, Spencer, and Klepp-
ner4 have reported a closely related effect—the
suppression of blackbody absorption in Rydberg atoms
by a parallel-plate cavity —and Gabrielse and Dehmelts
have recently observed inhibited spontaneous emis-
sion of cyclotron radiation by an electron confined in a
Penning trap. They observed damping times as much
as 5 times longer than the free-space value and attri-
buted the increased lifetime to cavity effects from the
surrounding electrodes. Their experiment provided
convincing evidence that spontaneous emission can be
suppressed, but because of the difficulty of calculating
the mode structure in the trap and varying it systemati-
cally, the demonstration was qualitative. In this Letter
we describe the observation of inhibited spontaneous
emission of a free atom by a well-characterized cavity
whose properties can be varied systematically. Spon-
taneous emission by a Rydberg atom was observed to
"switch off" abruptly as the transition wavelength was
varied across the cavity's cutoff wavelength and the
lifetime was measured to increase by a factor of at least
20.

The experiment employs Rydberg atoms in a "circu-
lar" state. This is a single-electron atomic state with
large principal quantum number n, and magnetic quan-
tum number ~m ~

=n —1. The circular state is essen-
tial for this experiment because it radiates by only a
single dipole transition. States with lower values of
~m ~

have two or more decay channels, all of which
would have to be suppressed in order to prevent spon-
taneous emission. The transition observed is
(n =22, ~m ~

=21) (n =21, [m [ =20); the wave-

length is A. =0.45 mm. The selection rule 6~m
~

= —1

assures that the radiation is polarized perpendicular to
the quantization axis defined by an applied electric
field.

In the usual mechanical treatment of spontaneous
emission, the emission rate is proportional to the den-
sity of modes in free space. It is straightforward to
show that in a cavity formed by infinite conducting
plates separated by distance d, the mode density for
the electric field parallel to the surface vanishes for
d & X/2, and that for d slightly greater than A./2 the
emission rate at a distance z from the midplane is7

A ' = 3A p sin'(7r z/d —7r/2),

where Ao is the Einstein A coefficient for the transi-
tion. In our experiment the atoms sample all of the
space between the plates, so that the sample-averaged
decay rate is

A'= —', Ap for X/2d & 1,

A ' = 0 for X/2d & 1.

If A,/2d & 1 the emission rate is slightly enhanced rela-
tive to the free-space rate. As the plate spacing is re-
duced, spontaneous emission is abruptly inhibited
when A becomes greater than 2d. (Quadrupolar radia-
tion can occur on the transition n n —2, but its rate
is negligible. ) Alternatively, the spacing can be fixed
and the wavelength varied, for instance by the Stark
effect.

The experiment was performed with a thermal
atomic beam of cesium. The beam passes sequentially
through three regions: a production region where the
atoms are transferred to the circular state, a drift re-
gion inside the parallel-plate cavity with a mean transit
time approximately equal to the free-space radiation
lifetime, and finally the detector where the arrival
times of the n =22 atoms are recorded. Spontaneous
emission changes the shape of the time-of-flight curve
from the usual Maxwellian form for an atomic beam.
When the emission is inhibited, the curve reverts to its
usual form and there is a dramatic increase in the
overall transmission. To switch from enhanced to in-
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FIG. 4. Total transmission signal for A/2d near the cutoff
region. (A. is altered by application of an electric field, which
increases from 0 to 3.1 kV/cm for the data shown. ) The
sharp increase in transmission at A/2d = 1 is due to the inhi-
bition of spontaneous emission; the decrease for X/2d
& 1.015 is due to field ionization between the cavity plates.

.98

slight variation in transmission with )t/2d is visible in
the enhanced region. In this region the field between
the field plates is increased from 0 to 1700 V cm
At low fields there is a small loss of atoms because of
nonadiabatic effects that mix m states as they pass
from the production region into the cavity. As the
field is increased this loss is eliminated.

Suppression of spontaneous emission offers the op-
portunity of eliminating the natural linewidth in spec-
troscopic measurements. However, in measuring en-
ergy levels to superhigh accuracy by elimination of
spontaneous emission it must be remembered that the
cavity inevitably introduces "nonradiative" shifts that
alter the structure of the atom. ' In effect, the atom-
vacuum system is replaced by the atom-cavity system.
There has been theoretical interest in such systems
since the work of Casimir and Polder. 9 The problem is
now becoming experimentally important, for as Brown

et al. ' have pointed out, cavity shifts are expected to
be significant in forthcoming measurements of g —2
for a trapped electron. Furthermore, they must be
taken into account in the design of future atomic
clocks. Although cavity shifts may set the ultimate
limit for useful applications of inhibited spontaneous
emission as a high-precision technique, it should be
pointed out that the present experiment provides a sig-
nificant step toward very-high-precision spectroscopy
of Rydberg atoms by achieving a major increase in
their useful time-of-flight path length.
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