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Subalgebras of Loop Algebras and Symmetries of the Kadomtsev-Petviashvili Equation
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It is shown that the symmetry algebra of the Kadomtsev-Petviashvili equation can be related to
an infinite-dimensional subalgebra of the loop algebra [SL(5,R) S R(t, t ') S [R(t, t ')d/dt].
The algebra is used to generate new classes of solutions of the Kadomtsev-Petviashvili equation,
depending on several arbitrary functions.

PACS numbers: 02.20.+b, 03.40.Kf

Infinite-dimensional Lie groups and Lie algebras, particularly Kac-Moody algebras and loop algebras, are play-
ing an ever increasing role in contemporary physics (for recent reviews and summaries see, e.g. , Kac, ' Dolan,
Jimbo and Miwa, 3 and Drinfeld and Sokolov4). In connection with completely integrable Hamiltonian systems
they have been used both to generate such systems and to integrate them.

The purpose of this Letter is to point out that infinite-dimensional subalgebras of affine loop algebras also occur
in a different and seemingly independent way in the study of certain integrable nonlinear partial differential equa-
tions in 2+1 dimensions. Namely, they play the role of symmetry algebras of such important equations as the
Kadomtsev-Petviashvili (KP) equation, the Davey-Stewartson equation, and other equations in more than one
spatial dimension. In this context we use the words "symmetry algebra" in the most restricted and classical
sense, namely, that of the Lie algebra of a Lie group of point transformations, leaving a given equation or system
of equations invariant. s 9 Such a Lie group transforms solutions of the system among each other and can be used
to derive new solutions by the method of symmetry reduction.

In this Letter we concentrate on the Kadomtsev-Petviashvili equation (the "two-dimensional Korteweg —de
Vries equation")

0 (t,x,y;u)—= [u, + —,'uu + —,'u ]„+4cru =0, o-= 1

and present its symmetry algebra, depending on three arbitrary functions of time t. We relate this algebra to an
infinite-dimensional subalgebra of the simple loop algebra A4, classify its one-dimensional subalgebras, and use
these to generate new solutions. We concentrate on the results only; details of mathematical nature and proofs will

be published elsewhere. 'o

As physical motivation let us mention that the KP equation describes the propagation of two-dimensional waves
on the surface of a fluid or a plasma, as well as internal waves on the interface of two fluids (e.g. , two layers of wa-

ter of different densities). The mathematical motivation stems from the fact that this equation is, in a well-defined
sense, generic among integrable nonlinear differential equations, especially those in more than one spatial dimen-
sion.

The symmetry algebra of the KP equation consists of differential operators of the form

V=~(txy;u)Bt+g(txy;u)6„+q(txy;u)r)~+qb(txy;u)r)„,
such that their fourth prolongation" (since the equation is of order four) satisfies

pr4V 0 (txy u)
~ (, &

o=0.

This condition is imposed by application of the differential operator pr Vto 0 and then elimination, in as much
as possible, of all y derivatives of u by use of the KP equation and its differential consequences. Equating to zero
the coefficients of linearly independent expressions in the t and x derivatives of u, we obtain a system of "deter-
mining equations" for the coefficients ~, g, q, and @ in (2). The procedure is standard and can be implemented
on a computer, with use of symbolic manipulation languages such as REDUCE'z or MAcsYMA. The result, first ob-
tained by Schwarz, ' is that a general element of the symmetry algebra of the KP equation has the form

V= X(f) + Y(g) + Z(h), X(f) =f tj, + [ ,' xf' ——', oyzf" ]t)„+,'yf—'B~—[(4o/27)y f'"——', xf"+ —,
' uf']r)„, —

&(g) = g BY
—

3 tryg'r)„——,oyg" r)„, Z(h) = h 8„+—', h'r)„. (3)

Here f (t), g (t), and h (t) are arbitrary functions of time of class C and the primes denote time derivatives. We
thus see that this Lie algebra is indeed infinite dimensional as its elements are labeled by these arbitrary functions.

Let us first show that (3) contains a structure that is a subalgebra of an algebra obtained by adding a derivation
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algebra, with basis d, = t'+' d/dt, to a loop algebra. To
see this, lei us follow a procedure similar to the one
described in Ref. 1, Chap. 7, providing a realization of
nontwisted affine Lie algebras. Instead of starting
from a finite simple Lie algebra, however, we start
from a solvable one, namely, the algebra Lo given by
the following vector fields in three variables:

b, =xB„+2y8»—2ut)„, Q=y8„, Y=tl,

X=t)„, A = —oy 8„+xQ„,S=y()„,
P=y28„, U=B„.

The algebra I.p is solvable, its nilradical is
(YA, P, Q, X,S, U), and it contains a five-dimensional
Abelian ideal (P, Q,XS, U}. The lowest-dimensional
simple real Lie algebra that contains a five-
dimensional Abelian subalgebra is SL(5,R) and indeed

Lp can be identified with a subalgebra of SL(5,R) real-
ized by the following matrices:

0
(= 0

0
0

—g op s u

0 —a q x
0 —5 —2oy 0
0 0 —5/3 —y
0 0 0 5/3

(e.g. , the matrix representing A is obtained by setting
a = 1 and all other entries equal to 0). A natural grad-
ing is provided by attribution of a degree p,
(0~ p, ~ 4) to each element of Lp, where p, is the dis-
tance of the corresponding element in the matrix (
from the diagonal (e.g. , p, =O for 6 p, =4 for U). Now
let L = R (t, t '~ be the algebra of real Laurent polyno
mials in t and D = R ( t, t ') d/dt be a (simple) algebra
of derivations. Consider a subalgebra of the loop alge-
bra A4t'~, extended by D, generated by the elements

X(t")= —,
' nt" b, + 9 n(n —1)t" A —(4o/27) n(n —1)(n —2) t" P+ t"rl, ,

Y(t") = t"1' —,'o-nt" 'Q——(4o-/9)n(n —1)t" 'S, Z(t") =t"X+ ,'nt" —'U.
(4)

If we attribute the degree n to a monomial t", we find
that X(t"), Y(t"~, and Z(t") have degrees n —1,
n + 1, and n + 3, ~espectively. We see that the
sub»gebra (4) of A4t'' S D coincides with the algebra
of vector fields (3), once the functions f'(t), g(t), and
h ( t) are restricted to Laurent polynomials.

We emphasize the difference between the realiza-
tion of the loop algebra constructed above and that of
other applications. The Laurent polynomials in our
case are functions of time t; in the other cases (Refs.
1—4 and many others) the corresponding expansions
are done in terms of a (complex) variable A. , related to
a spectral parameter in a Lax pair and in an inverse
scattering problem. The physical applications, as we
will see below, are also completely different.

The KP algebra (3) allows a Levi decomposition

L, =s e ~ s= (x(f)), x= (Y(g),z(l)),
where S is an infinite-dimensional simple Lie algebra
(isomorphic to the algebra of real vector fields on S',
simple according to a proof by Cartan' ) and )Vis a nil-
potent ideal in L. For a discussion of the relation
between the algebra of vector fields on S' and the
Virasoro algebra see the work of Goodman and Wal-
lach. "

The "physically obvious" symmetries of the KP
equation are obtained by restricting the functions in
(3) to first-order polynomials. We obtain the transla-
tions X(1)=6,, Y(1) =6», and Z(1) =8„,the dila-
tion X( t) = t 8, + —,x 9„+—,y 9» ——, u 9„,the "quasi-
rotation" Y(t) = t 8„——', o-y 8„,and the Galilei boost

Z(t) = t8„+—, 6„.Including a second-order polyno-
mial we obtain an SL(2,R) subalgebra (X(1),X(t),
X(t2)}, where X(t2) generates a conformal-type
transformation.

In order to generate solutions of the KP equation
systematically by symmetry reduction we first need to
classify the low-dimensional subalgebras of the KP
algebra into conjugacy classes under the adjoint action
of the corresponding Lie group. This is done else-
where'P for dimensions n = 1, 2, and 3. Here we sum-
marize the result for n = 1 only, namely, an arbitrary
element of the KP algebra can be conjugated into
X(1) [if f(t)~0], Y(1) [if f(t) =0, g(t)aO], or
Z (1) [iff( t) = 0, g ( t) = 0, and h ( t) & 0 ].

Symmetry reduction is performed in a standard
manner, namely, we take an element X of the sym-
metry algebra and write the first-order linear partial
diffential equation XI(t,x,y;u) =0. Solving the corre-
sponding characteristic equations we obtain two sym-
metry variables ((t,x,y), 7l(t, x,y), and an expression
for the solution of the KP equation:

u(txy) =c (txy)q(g, q)+P(txy),
where g, q, n, and P are explictly given. The function
q($, 71) is subject to a partial differential equation in
the two variables g and q, obtained by substitution of
(5) into the KP equation (1).

Let us consider each class of elements separately.
(1) f(t)&0.—Following the above procedure we ob-

tain solutions of the KP equation depending on three
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arbitrary functions f(t), g(t), and h (t):

( )
—2/3 ( ) + 2f' + 4o (2f'g 3f—g')y + 4o 2f' 3ff— 2+ 2o g

f' 81 f' 9f' ()
I

g= x+ + f ''
J

— g'(s)f ''(s)+h(s)f "(s)», q=yf '' Jg—(s)f ''(s)ds.
t

The function q (g, q) must satisfy the Boussinesq equation

(Tq&&+ (q )gg+ 3 qggtg= 0.

(2) f(t) = 0, g(t)&0.—We obtain solutions of the KP equation depending on two arbitrary functions g(t) and
h (t):

' —g'h) (
t, x,y —~q, "ri +

3
+

2
+

(7)
1 h og'

x — y+ y, ~ = g-'&'(s) ds,
~g

where q (g, q) satisfies a (differentiated) Korteweg —de
Vries equation

[q&+ ~ qqg+ 4 qggglg
= 0.

(3)f(t)= g(t) = 0, h(t)e0.—We obtain a linear equa-
tion that can be solved directly to prove the following
explicit solution of the KP equation:

u(t, x y)

4 h" (t)y
3h(t) 9h(t)

where r(t) and s(t) are arbitrary functions.
To summarize, formula (8) gives an explicit solu-

tion of the KP equation. Formulas (6) and (7) allow
us to "boost" arbitrary solutions of the Boussinesq or
Korteweg —de Vries equations into solutions of the KP
equation.

As final comments let us mention that the sym-
metry algebras of the modified KP equation and of
the Davey-Stewartson equation' have very similar
properties to those of the KP algebra. It appears that a
combination of the occurrence of Kac-Moody algebras,
the development of systematic methods of subgroup
classification, and the possibilities offered by symbolic
manipulation on computers should greatly enhance the
usefulness of the method of symmetry reduction for
nonlinear partial differential equations.
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