VOLUME 55, NUMBER 20 PHYSICAL REVIEW LETTERS 11 NOVEMBER 1985

One-Loop Finiteness in O(32) Open-Superstring Theory

Paul H. Frampton

Institute of Field Physics, Department of Physics and Astronomy, University of North Carolina,
Chapel Hill, North Carolina 27514, and Lyman Laboratory of Physics,
Harvard University, Cambridge, Massachusetts 02138

Peter Moxhay

Institute of Field Physics, Department of Physics and Astronomy, University of North Carolina,
Chapel Hill, North Carolina 27514

and

Y. Jack Ng

Institute of Field Physics, Department of Physics and Astronomy, University of North Carolina,
Chapel Hill, North Carolina 27514, and Stanford Linear Accelerator Center,
Stanford University, Stanford, California 94305
(Received 5 August 1985)

It is shown that the one-loop infinities cancel between diagrams for M =5 open external lines,
and any M for suitably constrained kinematics, in the O(32) superstring theory when one employs a
principal-part prescription for regularization.
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Superstring theory offers the first real hope of a suc-
cessful marriage between quantum mechanics and gen-
eral relativity. The theory may lead to controllable
quantum corrections to the classical Einstein theory.
Already, chiral-anomaly cancellation has singled out a
particular allowed gauge group O(2) for open super-
strings,! the gauge and gravity anomaly cancellations
arising from a series of apparently miraculous numeri-
cal coincidences. Further, and even more interesting-
ly, the one-loop graphs are finite. for M =4 external
lines? provided one adopts a principal-part (PP)

eralizes to all M > 4 (including M =6) the absence of
anomalies will be explained.

We shall do the calculation for gauge group O(N)
and show how finiteness holds for M =95 external
lines, and any M for suitably restricted kinematics,
only for N=32. For general M there are two diver-
gent one-loop diagrams with open external strings: the
annulus (an orientable planar diagram) and the Moe-
bius strip (nonorientable). These two infinities must
cancel if the theory is finite.

For the case M =4 discussed in Ref. 2 the annulus

prescription for regularization. If this finiteness gen- and Moebius strip have amplitudes A4p and A4y of the
_J respective forms

I d 1 d
A4,,+A4N=N1<4f0 —qu4(q2)—8K4j; 7‘1F4(—\/E). (1)

The PP prescription is to use integration variables

A=g% in A4p and A=+/g in A4y, allowing us to
rewrite for N =32

+1
A4P+A4N=16K4Pf_l %F4(>\), (2)
where P means principal part. There is a real ambigui-
ty here since if we had put (say) A =g rather than
A=¢g? in A4p the result would be infinite but (a) we
know that only N = 32 is consistent because of anoma-
ly cancellation! and (b) the PP prescription singles out
N=32. In the absence of a detailed regularization
procedure it seems - reasonable to adopt this PP
prescription as a working hypothesis.

The crucial factor 8 in Eq. (1) arises from the dou-
bled integration region of the three v; variables
(throughout we employ notation from the review arti-
cle by Schwarz®). Very naively, one expects a factor

2M-1 pere for general M, so that unless the super-

string algebra leads to nontrivial factors of 2 which
precisely compensate this the finiteness will fail and
the open superstring could be eliminated. To antici-
pate our result, the required nontrivial factor 24~ js
generated by a ‘‘superstring miracle’’ in the loop calcu-
lation.

We work in the light-cone gauge where the vertex
for emission of a massless gauge boson (with k* =0
and ¢ =0) is’

V(k)=C(P'+ RUK) Vy(k). 3)

Since vertices with k>0 are rather unwieldy, we will
restrict ourselves to the k* =0 case. This restriction
allows the discussion of M =10 external spinless,
massless particles. For all external particles of spin 1
(with {* =0) the restriction is stronger: M <5 for a

© 1985 The American Physical Society 2107



VOLUME 55, NUMBER 20 PHYSICAL REVIEW LETTERS 11 NOVEMBER 1985

parity-nonconserving amplitude and M <7 for a tributions as coming from the combinations

parity-conserving amplitude. Later on when we dis- RS, (4a)
cuss the general M case the result is understood to be R3(S,50)% (4b)
for suitably constrained kinematics. We shall first con- REP(n=0), (4¢c)
sider the pentagon diagram (M =5) because it already REP(n=0), (4d)

contains one nontrivial factor of 2 and it will then be
shown how these factors generalize to all M. The
M =4 case has only one nonvanishing piece (R§) be-
ing close to the M =2 and 3 cases which completely
vanish because of a superstring nonrenormalization
theorem; this is why the general result was not obvi-
ous from Ref. 2.

In the pentagon, we identify four nonvanishing con-

which have (a) ten R factors or (b), (c), (d) eight R,
factors, the minimum possible; contribution (a) is
pure fermion zero modes, (b) involves only fermions
but includes nonzero modes [note that R§ (S,)? van-
ishes because there is no second-rank antisymmetric
tensor in O(8)], (c) is pure zero modes but includes
bosons, and (d) involves bosonic nonzero modes.

The result for the annulus is (external momenta and

polarization vectors are k, and {1 ,IsI<59)
5

27

N I )", +1,+1+1,, (5)

Is/sJ/=sS5

1
Asp =g Tr(A®APANIAIN w1l -

fIdx,
=1

where 1, 4.4 correspond to the four nonvanishing pieces, (a) through (d). The detailed expressions are

1a=gilc£c LS K KPR K K Tr(Ré"'1R62’2R63"3R6“’4R35’5>. (6)

b= 564 ,gll—W’“

1
+ g —(x,x )’] ‘mwar(RdezjzR 4j“R s/s) + cyclic permutations},  (7)
243
where
tiljlizjziﬂj-‘Tr(’}’lm')’izj2 ‘3J3)—32[511Jz 121'381'3!'1_8i1i38izj38j1fz_8"1"26121'38"311+8'1‘36’21161213
_8‘11'28!'1!'38’2‘3+8'113811128'2'3+8'1'2811138'3f2_8"1/'38"2!'18"31'2]’ ®)
ili /.lln(xl-- ) ., i ,»zln(xz"'xL)
I = k' —K4(2,3,4,5) + K ’—K,(3,4,5,1) +cycli .
=i 3k K )43 3 KK ) +cyclic perms ©)
where, e.g.,
— rhd K2 sT (R'zszissti4j4Rf51'5) (10)
K4(2,3,4,5) =03 C C ks r o Ro "Rg™),

L={K4(2,3,4,5¢ kot xh — | 2
d 4( )€11§11~ [2[X2 {xz

,‘+k§‘

!
[ st;ﬁ ] — (xsx7)

In Eq. (5), gis the coupling constant, A% are the %N(N— 1) generators of O(N) written in the adjoint representa-
tion, and w = x1x,x3x4Xs. If we change to the disk variables
vi=In(x; - x)/lnw, 1=I=(M-1), (12)
g=exp(27¥Inw), (13)

1
+ kgl

x} ] + cyclic perms. (11)

the Jacobian gives the following in Eq. (5):
M—4

M 5 2 M—1
- 27 d. 27
H dx - 2T —16m384| - 27— — d
1 1|\ [ Tow 16 p Ing 1|_|10(v1+1 vpdvy. (14)
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The integrand is meromorphic in ¢ since the pole cor- where ¢ = w”, then, near the end point ¢ =0,
responds physically in dilaton emission.*® Hence, not- ( Ing) 1
ing that fp(v,w)=——r—li—cot v|1+ O] — ], (18)
2 Ing
yu=yvlv;—v.q), (15) so that each mode sum in Eq. (7) for I, and Eq. (11)
- o n for I; contributes to the infin@ty of the annulus.'

b (,q) = — | 27 |sinmv II 1-2¢""cos2mv + g*" Note that the nonleading term behaving as
Ing ot} (1—g*")2 (glng) ! as g— 0 would, if present, also diverge.
From the physical picture of soft dilaton emission we
(16) know that such a unitarity-nonconserving piece must

be zero; the algebra underlying this involves I, and I,
also and will be discussed in Ref. 6.

The infinity of the annulus arises from insertion of
Eq. (18) in Eq. (5), and we must now consider its
comparison to the pentagonal Moebius-strip diagram.
Fortunately, the infinity cancellation takes place term
by term in our expressions. Asy is obtained from Asp

and using 3 < yk;k;=0, we see that for the pentagon
the leading divergence of the annulus arises from
those parts of I, + I, + 1.+ I; which generate a single
power (Ing). This arises only from the mode sums of
I and 1, because if we define the planar mode sum

frv, )= g 1 — [C = (w/a)'l, an in Eq. (5) by making the following changes:
=1 (i) Replace the group factor Nby (—1).
J (i) Replace sy by ¥y y=0n(v;—v;,q) with
~2(—~/q )"cosmv + q"
= — . 19
yn(v,q) ]sm( 771/)”1_11 1= (T (19)

(iii) Replace x; by —x; (we twist the propagator ,

between ks and k; ). while the changes to Asy give

(iv) Integrate dv; from O to 2, instead of 0 to 1. To )
combine the infinities, we make the variable changes Asy=— é—x léf 4q Fs( —\/E ) + finite, 23)
A=¢q%in Asp, and A\=~/q, vj=v;/2in Asy. 0 ¢

There is, however, also the change that the mode  where the overall 5 is from Eq. (21) and the 16 arises
sum in Eq. (17) is replaced by the nonorientable ver- from the four changes vj = v;/2. Clearly now, the PP
sion prescription leads to finiteness for O(32) just as for

o M=4,
v, ) =121 T_(—_”T[C —(=w/a) (20) For general numbers of external legs M (and suit-

ably constrained kinematics) there are M —3 pieces
which contribute to the divergent term for ds=M <7
and five pieces for all M = 8. For example, M =6 has
the three pieces

REP(n=0)2, REP(S,Sp)?%

1+0 @n

1
nall
1

The factor 5 sitting in front of Eq. (21) is the super-
string miracle which allows the finiteness to persist for

M > 4. Note that the sign change x;— — x; can al- RE (8,504,
ways be avoided in fy(v,w): If ¢ contains x; simply o
use ¢’ = w/c which does not. Defining Fs(g?) in the all containing two mode sums. For general M = 8§ the
obvious way by substitution of Eq. (18) in Egs. (7) five pieces are
and (11) and these, with Eq. (14), in Eq. (5) gives the CREPM—4 R§MM—3(S,S))?,
divergent part 1 ROZPM_6(S,,SO)4, ROPM“7(S,,SO)6,
d ..
A5p=NJ;) —(—Iq—Fs(qz)+fm1te, (22) PM=3(S,5,)8,

J

all containing (M —4) mode sums. Thus
_l_di 2y _ (LyM—49M—1 —Ja .
Amp+ Aun =}, —-[NFy(g*) — ()M =2M=1F) (=g ) ] +finite, (24)
giving a finite result for O(32) mdependent of M.
Concerning our restriction to k* =¢* =0 kinematics, the general configurations with k*=0 have been dealt

with in light-cone gauge only for the ‘‘simple’’ case of M =4 tree amplitudes. 7 1t is expected that, though our cal-
culational technique is valid only for all external momenta and polarization vectors in the transverse space, Eq.
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(24) is valid for the most general kinematical confi-
gurations.

Although we have carried out our calculations only
for external massless gauge bosons, the finite result
for diagrams with external massless gauge fermions is
to be expected because of supersymmetry. We have
presented only an outline of our calculation; more
complete details of one-loop amplitudes in this and
other superstring theories will appear elsewhere.® The
continued health of the O(32) model may justify its
phenomenological reexamination (e.g., Mani et al.?).

This work was supported in part by the U. S. Depart-
ment of Energy under Contract No. DE-AS05-79ER-
10448, and the National Science Foundation under
Grant No. PHY-82-15249.

Note added—We have been informed by Professor
L. Clavelli (private communication) that he has in-
dependently checked the finiteness at one loop of the
same O(32) theory, using a covariant formulation.

After this paper was submitted, we realized that the
constraint * =0 used in Eq. (3) of the text can be re-
laxed, allowing the generalization of our results for
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both parity-nonconserving and parity-conserving am-
plitudes to all numbers M =< 10 of external ground-
state particles.®
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