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Baryons as Solitons in the Effective Lagrangian
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I present the calculation of the effective Lagrangian from the a--quark model on the basis of
some reasonable assumptions of the spontaneously broken chiral symmetry, the large-N, limit, and
the nature of the effective-action expansion. In addition to the Skyrme Lagrangian with a unique
coupling constant e = 7r [2(3/N, ) ]'i2 and the Wess-Zumino term, it contains an extra new term
(N, /96+2)Tr(B„L&)2 which must be treated as a perturbative correction. This new term is respon-
sible for the correct pion form factor corresponding to m~ =87r f (3/N, ). This model can be used
to describe the rich low-energy dynamics of baryons and mesons with the unique mass scale f„.
PACS numbers: 11.10.Lm, 11.30.Rd, 11.40.Fy, 12.35.Eq

If quantum chromodynamics (QCD) is the correct
theory for the low-energy dynamics of the light had-
rons, it must follow the scenario that SU(3)t
S SU (3)tt chiral symmetry must be broken to

SU (3) t spontaneously. The resulting Goldstone
bosons which are identified with the nonet of the
pseudoscalar mesons must transform as the
(3', 3) S (3, 3') representation. It has been a chal-

I

lenge for the theorists to construct an effective low-

energy theory of hadrons that realizes these symmetry
properties and reflects the underlying composite struc-
ture of confining quarks and/or antiquark states.

The necessary criterion for a composite particle to
be described by an effective Lagrangian at low energy
is that its Compton wavelength I/m must be much
larger than its size. ' The only hadrons that qualify na-
turally are the nonet of pseudoscalar mesons. There-
fore, the only sensible effective Lagrangian for the
light hadrons is the nonlinear SU(3) o- model, 2 3

Jt d x Yrr=J d x[—„' f Tr(t)~U t)~U)+ (four-derivative terms) +. . . ],

where f =94 MeV is the pion decay constant and
U= exp(il, &,/f ) is a. unitary SU(3) matrix that
transforms like (3, 3') under the chiral
SU(3), e SU(3), .

Since it may not be practical to derive this effective
Lagrangian from QCD, I shall assume the next level of
the effective low-energy dynamics to be the o--quark
model. In this paper I shall present the effective-
action expansion of this model and show that, to lead-
ing order in the 1/N, expansion (N, is the number of
colors), the four-derivative terms can be determined
completely with no arbitrary parameter and that they
contain the Wess-Zumino anomaly term, 4 the Skyrme
terms with renormalization e = 7r [2(3/N, ) ]' 2 compar-
able to that determined empirically by Adkins, Nappi,
and Witten, 6 and an extra new term which is shown to
be responsible for the correct description of the vector
form factor in the meson sector and which must be
treated as the perturbation correction to the Skyrme
model. I further propose that the inclusion of this
four-derivative term in the effective-Lagrangian ex-
pansion (1) is sufficient to describe low-energy hadron

r

phenomenology with baryons as solitons. s s

The first term in Eq. (1) containing two derivatives
is the minimal nonlinear cr model which is completely
determined by the underlying symmetry properties of
the model. It reproduces the successful current-
algebra results in the zero-energy limit. However, this
term cannot give the proper structures to hadrons; for
example, it can be seen that the pion does not acquire
any form factor, and that in the absence of the Wess-
Zumino term, processes such as KK 3m and

2y are forbidden. The de'eper structures of had-
rons must come from the dynamics of a more funda-
mental theory and are manifested as the multiple-
derivative terms in the effective expansion Eq. (1).
The more derivatives the successive terms contain, the
more detailed are the structures of the fundamental
dynamics required to calculate these terms. In the
large-%, limit, the four-derivative terms are deter-
mined by the representation of the constituent parti-
cles, i.e. , the quarks, and are independent of the de-
tailed dynamics of their interaction. The Lagrangian
for the nonlinear cr-quark model is

JI ~d4x=JI d4x[ —,'f TrB&U t) U —q [pi 't)+ mu(x)]qI,

where

u(x) = —,
' (1+y ) U+ —'(1 —y ) U = exp(iX 4&,y /f„)

(2)
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is also unitary and the summation of the color quan-
tum numbers is understood for the quark fields. The
N, dependence can be displayed explicitly by the scal-
ing f f (N, /3)' . The chiral perturbation expan-
sion in powers of 1/f 2, the 1/N, expansion, the semi-
classical expansion in powers of t, and the loop expan-
sion are all equivalent, except for an additional factor
of N, associated with the summation of color in each
quark loop. Therefore, in the large-N, limit the lead-
ing contributions are the tree and one-quark-loop
graphs. The meson loops and other graphs are
suppressed by at least 1/N, and will not be considered
in this calculation. The 1/N, expansion of the a.-quark
model is therefore completely consistent with the 1/N,
expansion of QCD. '0

It is nontrivial to calculate the effective-action ex-
pansion of Eq. (2). Unlike the effective potential,
there has not been any simple method to calculate the

multiderivative terms in the effective-action expan-
sion. " For this reason, there has been an incorrect
claim of having derived the Skyrme Lagrangian from
the effective action of Eq. (1), and consequently, the
determination of the coefficient of the Skyrme term is
erroneous. '2 Motivated by this problem, I have for-
mulated a systematic method by which to evaluate the
multiderivative terms in the effective-action expansion
beyond the effective potential, relying only on the
familiar momentum-space and Feynman propagators. "
I shall refer the reader to Ref. 11 for the details and
summarize the essence of this method as applied to
this problem.

It is convenient to perform the calculation in the
Wick-rotated Euclidean space with xo —ix4,

yo = —i y4, and the Euclidean metric ( 1, 1, 1, 1 ) . The
quark fields can be eliminated by explicitly carrying
out the functional integration in

d [q]D [q ] exp —„' d x q (x) [ —yi '8+ mu (x) ]q (x) = exp( —N, Tr lnS~ '),

where SF(x,y) is the Euclidean Green's function defined by

[ —y i '8 + mu (x) ]SF(x,y) = 54 (x —y) .

The crucial step for the effective-action expansion is the formal solution for the Green s function SF(x,y) as a
function of the background field u (x). As shown in Ref. 11, the solution for the Green's function in the momen-
tum space is given as if the background field u is constant, except that the argument of u is replaced by x+ i 8/Bp:

S~(x,y) = t e'~'y —y —rl+ mu(x)
d4p ; . 1

(2m)4 i

]
e —iP x P eiP (y —x)S(p x)

d4

where
f

S(p,x) = [y p+ mu (x+ i r'l/Bp)] p'+ m' —my —Bu (x+ i 0/Bp)
1

I

1

y'p+mu (x)
X X

1 1
~~ ~ g( ) 6 a 1

Bp; p+m (3)

This expansion can be applied directly to evaluate the variation of the effective action,

d4
5TrlnSF '=„' d x m Tr5u(x)SF(x, x) = d4x m Tr5u(x) „' 4S(p,x).F 2~ '

Apart from the tensor structure, which can be treated easily by the standard symmetry considerations, the remain-

ing momentum integrations are of the same general type as given in Ref. 11. Keeping only terms up to four
derivatives and taking the trace of the y matrices I obtain the quark-loop contribution to the effective Lagrangian,

—+P(1) m Tr(B U 5U+5U rl U)+ ' Tr(B U 5U+5U rl~U)
16m2 967r 2

+ Tr(2U~ UikUk5U+2Uii Ui Uk5U Uk &nUk5U+2U&UtkUk5U
X,

48m. 2

+2'(Uk Uk5U —UkUii Uk5U )+ 2 iE»ki Tr(U U;U~ UkU( 5U),
48m. 2

(4)
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where the subscript is used to denote the derivative, U, = t);U, etc. Since U U= I, the variations 5Uand 5U are
not independent. This constraint has been used in arriving at the expression Eq. (4). The first term is infinite and
can be absorbed into the o--model Lagrangian by the renormalization of f . The last term is the Wess-Zumino
anomaly term with coefficient exactly in agreement with Witten's analysis. Because of the unitary constraint it is
not possible to perform the functional integration in Ufor the Wess-Zumino term. However, if instead the calcu-
lation is carried out in five-dimensional space, the %ess-Zumino term would be

~~wz= (N, /240m. ) le jklm 'TrU; UJ Ui UiUm~»

which can be integrated exactly to give the action

(N, /2407r )ie;jki J d x TrU, UJUk UiU U. (5)

The integration is over the five-dimensional volume bounded by the four-dimensional space, which, for example,
can be the half-space in five-dimensions, with U(xs=Q) = Uand U(xs= ~) =0. The variation on Eq. (5) is a to-
tal divergence and one can convert the integral into a surface integral to recover the result of Eq. (4).

When we add the contribution from the meson part, Eq. (4) can be rewritten as

6&= —i Tr(d; JL;oUU ) = —i Tr(B;J~;U 5 U).

One can apply the Wick rotation back to the Minkowski space and obtain the left-handed effective current in terms
of L, = i(t)„U) U':

JL = —,
' f L +

2 (
—2rii't) L +tl"tl L —3i[L,()"L„]+i[Li", "d L +tl L ] —ie t r LpL Lt),

while the right-handed effective current JI can be obtained from JL by replacing L by 8, with R~ = i(t)„U ) U.
The Wess-Zumino term has normalization identical to that obtained by Witten. 7 The baryon current is given by

B = Tr [J~+J ] = —i (N, /247r )e~t'"~ Tr L&L Lt;.

The effective action can be obtained directly from Eq. (4):
f

S,«= J d4x Tr —f2L„Li'+ [3(B L&)2 —(8 L„)(t)&L")—(8 L„)(t)"L")]

Nc
d x 6~ p~ TrL&I "I I&L~.

240m' "«t4~

Equation (8) may be rewritten by use of the identity B„L„—B„L~=i [L„,L„]. Then S,«becomes

St «Jt d4x Tr( 4 f L L~+ (N /192 tr2) (2(t) L&)2+ [L„,L„]2)+ W-Z term.

This action differs from the Skyrme model even at the SU(2) level, where the W-Z term vanishes identically. If
one simply ignores the additional term of (t) Li'), the coefficient N, /192m2 can be identified with 1/32e2 as de-
fined in Ref. 6. Then I obtain e = m. [2(3/N, )]' 2=4.43 to be compared to e = 5.45 estimated by the masses of N
and 5 in Ref. 6.

The new term can be rewritten with the identity

Tr(rl„Li") = Trtl U t) U —Tr(L Li")

The static energy is given by

E=
4
f2 Tr I d3x(7U '7U +M 2[ —'7 U'72U + 2 (rl;LJ —"djL;) + (L L) ]),

where the characteristic mass scale Mis defined by

M = 27rf [2(3/N, ) ]' = 2f'„e = 840 MeV.

(10)

The term with the negative sign renders the expression not positive definite, which may jeoparidize the stability of
the soliton solutions. In order to understand the nature of this negative sign, it is necessary to examine its effects
on the meson sector. From the currents given by Eq. (5), the meson vector form factor is F(q ) =1+q /M.
The coefficient of the term with the negative sign in the energy is in fact the slope of the vector form factor! There
fore, independent of any particular model, if the vector form factor of the pion has the correct sign for its slope, the energy
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cannot be positive definite I.n this model not only is the
sign of the slope correct, but the magnitude is close to
that of the vector-meson —dominance model,
M=m .P'

The apparent inconsistency may be understood in
the following way. Both the energy and the form fac-
tor are approximations in the low-energy expansion.
The form factor cannot be correct for large q . In the
spacelike region, F(q ) is not positive definite. How-

ever, if one uses Pade's approximation, the form fac-
tor becomes9 I'(q ) =(1 —q /M ) '. This is what
one would expect for a vector-dominance form factor
with M = m . More importantly, the form factor be-
comes positive definite in the spacelike region. The
indefiniteness is, hence, an artifact of the low-energy
expansion.

The same analysis applied to (9) yields a positive de-
finite energy,

E= —,
' f2 Tr d3x('7U (1 —&2/M2) '& Ut+ M 2[ —, (rl;L~ —rJJL; )+ (L L)2]).

Furthermore, a simple application of the scaling argu-
ment'3 shows that Eq. (11) can have stable, finite-
energy soliton solutions.

As in many other physical systems, the instability of
the ground state may be caused by truncation of the
low-energy expansion. A well-known example occurs
in the nonrelativistic reduction of either the Dirac
equation or the Bethe-Salpeter equation. The —P/
8m3 term or the spin-orbit term from the Coulomb po-
tential can only be treated consistently as a perturba-
tion term. Similarly, in this QCD model, the instabili-
ty induced by the new term should not prevent the use
of this low-energy expansion, Eq. (9), as a vital ap-
proximation for the low-energy hadron phenomenolo-
gies, as long as it can be treated consistently as a per-
turbation term to the Skyrme model.

If one can accept this viewpoint, one can begin to
appreciate the elegance of Eq. (9) and to entertain the
real possibility that the richness of low-energy hadron
physics can be summarized by a simple model with a
unique mass scale f . The phenomenological analysis
of this model will be reported in future publications.

After this work was completed, I learned that
Aitchison and Fraser'4 and independently MacKenzie,
Wilczek, and Zeets have also computed the effective-
action expansion for the SU(2) o- model from the
quark-loop contribution. Our methods of calculation
and interpretations are completely different. I would
like to thank A. Zee for an advance copy of the
manuscript of their work. This work was supported in

part by the U.S. Department of Energy.
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