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In contrast to previous treatments, a new analysis of two-dimensional many-electron systems
subject to periodic boundary conditions in a magnetic field leads to a fully two-dimensional struc-
ture of the quantum numbers at rational Landau-level filling. The structure of the new symmetry
analysis has an intrinsically many-particle character. Full agreement between numerical studies of
quantized-Hall-effect systems in periodic and spherical geometries is achieved, and the problem of

ground-state degeneracy is clarified.

PACS numbers: 05.30.Fk, 71.45.—d

The quantized-Hall-effect (QHE) phenomenon! has
focused theorists’ attention on two-dimensional (2D)
many-electron systems in a magnetic field. It was long
ago shown? that the structure of the translation-
symmetry group of a charged particle in a magnetic
field is richer than that in the zero-field case, and if a
substrate potential is present, has simple features only
if the potential is periodic with a rational flux per unit
cell. In this Letter, I report that the translational sym-
metries of the many-particle system with rational flux
(q/p) per particle (in units of the flux quantum
®,=h/e, so that v=p/q is the Landau-level filling
factor) also have a previously unsuspected richer
structure—intrinsically many particle in character
—than that of the one-particle system. This structure
emerges from an analysis of the application of periodic
boundary conditions to a finite system, and develops
fully as the thermodynamic limit is taken at fixed v.
The intrinsically many-particle character of the
translational-symmetry quantum numbers appears to
be novel, and is formally a consequence of the fact
that in the presence of a magnetic field, the translation
operators define a projective (ray) representation’ of
the translation group with a number-dependent factor
system.

The full characterization of symmetry is essential for
the understanding of physical systems, and the new
analysis resolves puzzling contradictions between pre-
vious studies of 2D many-electron systems which have

appeared to depend significantly on the choice of
gauge and boundary conditions. Studies using explicit-
ly isotropic formalisms (disk* and sphere® geometries)
have provided a rather successful picture of the QHE,
but are difficult to reconcile fully with other studies®8
using a periodic boundary condition (PBC). The
former studies describe an essentially nondegenerate
ground state, while the g-fold ground-state degeneracy
reported in the latter studies has been taken by some
authors’? as a feature intrinsic to the fractional QHE.
There is also little apparent resemblence between exci-
tation spectra reported in spherical® and periodic®
geometries. The reason for these discrepancies turns
out to be the fact that previous authors using the con-
ventional PBC formalism have simply applied the
one-particle symmetry analysis,? overlooking the new
many-particle features reported here. I find that (at
rational v only) states may be characterized by a 2D
wave vector k, while earlier work has only recognized
the component of k along the direction singled out by
the Landau gauge as a quantum number. The g-fold
ground-state degeneracy emphasized by some authors
is identified as a center-of-mass degeneracy common
to all states, unrelated to whether or not the system
has an incompressible QHE ground state.

While eigenfunctions and eigenvalues obtained in
previous numerical studies of finite systems with
PBC’s remain correct, the earlier classification of
quantum numbers is essentially meaningless. In addi-
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tion, use of the full symmetry allows such studies to
be repeated and extended with much smaller comput-
ing effort, and I illustrate this by presenting the excita-
tion spectrum of the six-particle v = % system, now re-
markably similar to results obtained on the sphere.’
Direct comparison of the ground state with the recent
periodic reformulation!® of the Laughlin-Jastrow wave
function? is made for the first time, and incompressi-
ble QHE states are characterized as k=0 states—the
only value of k at which point-rotational degeneracy is
absent.

In a uniform magnetic field ByZ normal to the 2D
system, the operator #(a) that translates particle i by a
and commutes with the dynamical momentum 7,
= — ikV,;— e A(r;) obeys the algebra®

ti(a+b)=1r(b)r,(a)exp(iz-axb/2/?),

where / is the ‘“‘magnetic length’ (5/eBy)"?% t(a)
=exp(ia-K;/k), where K,=m;,—kzZxr;/I> is the
‘““pseudomomentum.’”” Periodic boundary conditions
require physical quantities to be invariant under transla-
tion of any particle coordinate r; by L,,,, where the set
{L,un} = {mL,+ nL,; m,n integer} defines a 2D Bravais
lattice with primitive unit cell area Z-L;XL,
= 21TN312, traversed by N, quanta of magnetic flux. It
will be convenient to define primitive translations L,,,
as those where AL,,,, 0 < A\ < 1, is not a lattice vector
(i.e., those where m and »n have no common divisor
greater than unity, and are not both zero).

All physical quantities, including the Hamiltonian,
can be expressed in terms of the gauge-invariant prod-
ucts ({r;}la) (Bl{r;}), where y,({r;}) = ({r;}la) are
the Schrodinger wave functions. The PBC becomes
the condition [|a) (8l,4(L,,,)1=0, which is a selec-
tion rule that |a) (8| is constructed from states that
are both simultaneously eigenfunctions [with the same
eigenvalues exp(i8},)] of all t,(L,,). The additional
selection rule that states are symmetric or antisym-
metric under exchange of identical particles /,j requires
that exp(if/},) =exp(i8},). Simultaneous diagonali-
zation of the ¢, (L,,,) requires that N, be integral.

Physical states of N, identical particles with periodic
boundary conditions thus belong to one of a two-
parameter family of equivalent Hilbert spaces
o (01, 0,) where f(L,,)=exp(ib,,), 6,,=mmnN,
+m#0;+no,. The filling factor v is N,/N,, where
N,=pN and Ny =gN have a maximum common divi-
sor V.

The center-of-mass (c.m.) translation operator is the
product 7T(a)=T]],;(a). Only the set {T(L,,,/N,))}
acts within a given Hilbert space 9 (6, 6,); other c.m.
translations map states from one space to another.
The PBC translation operators can be factorized:
t(L,,,)=T(qL,,/pN;)t;(L,,,), where

i) =IL4(a/N)(—a/N,), Tlia)=1.
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The operators 7;(a) are invariant under center-of-mass
translations, and will provide the fundamental quantum
numbers of the system. The largest set of these opera-
tors which act within a physical Hilbert space is
{t:(pL,,,)}, which can be simultaneously diagonalized.
I define the reciprocal vector k, so that for the set of
primitive translations L,,,,, the eigenvalues are

;(pLyy) = (— 1)PaNe— 1) exp(—igk-L,,/N).

The prefactor (derived below) fixes the k=0 states;
the scale of k is chosen to be standard so that the ac-
tion of 3 ,exp(iQ-r;) on an eigenfunction of the
{t(pL,)) increases k by Q, provided that exp(iQ
-L,..) =1, so Q is allowed by the PBC.

Allowed k values for identical-particle systems satis-
fy exp(ipk-L,,) =1, there are N? distinct values of k
for a finite system, forming a mesh of area 27/Ng/? in
reciprocal space, in a ‘‘Brillouin zone’> of area
27w N/qi%. In the thermodynamic limit N — oo at fixed
plq, i.e., at rational Landau-level filling, a uniform cov-
er of all reciprocal space is obtained. Note that in the
case of irrational filling factors, obtained as the limit of
a sequence where N, and N; have only the common
divisor N =1, this 2D reciprocal space cannot be con-
structed, and the earlier symmetry analysis® is com-
plete.

I now specialize to translationally invariant systems
with PBC’s, so that the Hamiltonian commutes with all
T(a), and the set {;(L,,)}. [This last requirement
can be satisfied by Fourier transformation of the pair
interaction, and reconstruction of it by discretization
of the reverse Fourier integral over reciprocal space to
a sum over the mesh of Q values where exp(iQ
L,,,) =1, but this is not a unique prescription.] Be-
cause of translational invariance, the spectrum of the
Hamiltonian is independent of the parameters 6, 6,,
and k is a good quantum number. The total kinetic
energy 3,;|2xa;|?/2m can be separated into a center-
of-mass term H®™=|3 2xw,;|*/2mN,, plus a rela-
tive-motion term which combines with the interaction
term to give

He=3, {

1 o
|Z2% (mr,— 7 ;) |2
i<j| 2mNe o

1

+
N, 2

Q

EV(Q)e"Q"'f"f)”

The relative-motion variables of H™ are independent
of the center-of-mass variables of H®™: The many-
particle wave function can thus be factorized into a
product ¥°™ ® ¥  The principal symmetry quan-
tum number of ¥™ is k, and in general'! no states of
H™ with the same k are degenerate; the energy levels
of H®™ are classified by the c.m. Landau-level index,
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but in general have additional degeneracy associated
with action of the Hilbert-space-preserving c.m.
translations 7(L,,/N;). Once 6,, 6,, and k have
been fixed, this residual c.m. degeneracy is g-fold:
Yem js then determined to be a simultaneous eigen-
function of the set {T (¢grL,,,/N,)}, where L,,, is prim-
itive, and r is any integer, with eigenvalues

(—1)PrrWe= 2 exp(ipr0,,, +igrN,"'k-L,,,).

The residual c.m. degeneracy can be resolved by re-
quiring ¥*™ to be an eigenstate of T(L% N,), where
L? is some particular primitive translation. Since the
gth power of this eigenvalue is already determined, it
takes ¢ possible values. The combined set
{T((gL,,, +rLg)/N,)} is a maximally commuting set,
and Y™ cannot be an eigenfunction of any further
T(L,,,/Ny). Various other resolutions of the g-fold
c.m. degeneracy are possible.

It should be emphasized that this g-fold c.m. degen-
eracy is a purely group-theoretical consequence of the
imposition of PBC’s on a translationally invariant sys-
tem, and quite without physical significance. It is a de-
generacy common to every eigenvalue of the Hamil-
tonian belonging to a given subspace % (9, 6,), and
related to the degeneracy between subspaces. It is
present independent of the physical nature of the ground
state of H™', whether it is of the fluid type and exhibits
the QHE, or a solid type and does not.

Imposition of PBC’s breaks isotropy of the system,
which is only recovered as N — o. However, the fin-
ite system still has some point symmetry. The follow-
ing statements can be made: (1) The spectrum as a
function of k has the full point symmetry of the PBC
Bravais lattice; however reflections reverse the mag-
netic field, and are only symmetries of H™ when cou-
pled with the antiunitary time-reversal operation. (2)
The only quantum numbers of H™ that can be speci-
fied in addition to k are those associated with twofold,
threefold, fourfold, or sixfold rotations at k=0 and
certain other high symmetry points in the ‘‘Brillouin
zone’’ of a finite system. (3) Unless Landau-level
particle-hole symmetry is present,!! conjugate
representations of these point-rotation groups are not
degenerate, and the only degeneracy of states of H™! is
that between states with different k vectors related by
point symmetries of the Bravais lattice.

These considerations fix the definition of the k=0
state. In the thermodynamic limit, this is the only
value of k not related to any other by point symmetry.
In the case of the highest-symmetry PBC—the hexa-
gonal Bravais lattice—there is only one such point in k
space, the one at which sixfold rotation symmetry is
present. This has been taken as the definition of the
k=0 point, and can also be shown to remain con-
sistently nondegenerate as the Bravais lattice is adia-
batically varied. The hexagonal lattice may be speci-

fied by choosing |L;|=|L,|=2L,-L,/|L,|. Under a
m/3 rotation, L, — L,, L,— (L,—L,;). The invariant
point is the solution of

t(pL)) =4;(—pL)) =,(pLy)) =1,(pL,— pL)),

which can be reexpressed as (—l)liq(Ne_”f,gpLz);,
x(—pL;). Thus when k=0, ((pL;))=t(pL,)
= (= 1)"™™V and all 7(pL,,) with L, primitive
are found to have the same value.

QHE incompressible-fluid states can now be charac-
terized as states where H™ has a nondegenerate k=0
ground state with a finite gap for all excitations. The
interpretation of k is particularly clear in the case of a
filled Landau level, where %#k is the sum of the pseu-
domomenta K; of particles excited to higher Landau
levels, minus those of the empty states (holes) in the
filled level. Provided that the numbers of particle and
hole excitations are equal, this is invariant under c.m.
translations, which add a constant pseudomementum
to all single-particle states, empty or full, and has com-
muting components.

The V=% QHE state is modeled by the Laughlin-
Jastrow (LJ) wave function.* The periodic form of
this is now available,!® and becomes the exact ground
state in the limit #eBy/m — oo for a model ‘‘hard-
core’’ interaction® corresponding to the pseudopoten-
tial ¥ (Q) = const—2V;Q%* (V, > 0 is the pairing en-
ergy of two spin-polarized electrons in the closest pair-
ing state, while all other pairing energies are zero).
This state emerges very clearly in numerical studies
using the hard-core pseudopotential, as it has exactly
zero potential energy, all other states at v= —;— having
energies proportional to V.

To emphasize the practical importance of the new
symmetry analysis presented here, I have carried out a
numerical diagonalization of the N,=6 system of
spin-polarized electrons in the lowest Landau level at
v=+. A square PBC Bravais lattice and Coulomb in-
teractions were used. Details, as well as results for
larger systems with various v and PBC geometries, will
be described elsewhere. The low-lying excitation spec-
trum is shown in Fig. 1. Use of a basis of k eigenstates
reduces matrix dimensions by about N: In the present
example, the largest matrix had dimension 176, while
by use of the methods of Refs. 4-6 dimensions are
1026 and greater.

The ground state of this six-particle system was
directly compared to the periodic LJ state: In line with
disk* and sphere’ geometry studies, the projection on
the LJ state was 98.81%. The collective excitation,
with its dispersion that has a characteristic mini-
mum?®!? at |k|=1.4/"1, stands out very clearly, and
in this new presentation the spectrum is strikingly
similar to that obtained in the spherical geometry.’
Indeed, both ground-state properties and excitation
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FIG. 1. Low-lying excitation energies (in units e?/4mel)
vs |k| for the spin-polarized six-electron lowest-Landau-
level system at v=+, with Coulomb interactions V (Q)
= e?/4meQ and square periodic boundary conditions. Pair-
ing degeneracies of k points are shown at the top. At k=0,
the rotational quantum number AM(mod 4) is indicated by
solid points (AM =0) and open points (AM =2).

spectra were found to be very insensitive to variation
of the PBC geometry away from the square lattice.
Rotational quantum numbers AM (defined modulo 4
for the square PBC lattice) are indicated for k=0
states. The lowest excited state at k=0 (presumably
the long-wavelength limit of the collective excitation
dispersion) has |AM|=2. It may be remarked that a
k=0 excitation cannot be described by the Feynman-
Bijl Ansatz of Girvin, MacDonald, and Platzman,!? and
an interpretation of the k— 0 limit of the collective
mode is still an open problem. ,

As in Ref. 5, I also examined the effect of changing
the short-range pseudopotential component of the in-
teraction by adding a ‘‘hard-core’® term to the
Coulomb interaction. A first-order transition (this
time marked by a change of ground-state point-
rotation symmetry) to a gapless, compressible state
(the Wigner lattice ?) was again observed for AV,
< —0.10e%/4mel.

Finally, I mention results at v = %, where systems of
as many as ten particles can now be diagonalized. In
contrast to the v= % case, the ground state is not gen-
erally found at k=0, but at general k points that move
and change discontinuously as the PBC geometry is
varied. Low-lying excitations are quasidegenerate with
the ground states, and no gap structures are apparent.
The detailed level structure depends very sensitively
on PBC geometry and N, and no clear picture emerges
from the finite-system study.
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In summary, I have described novel particle-
number-dependent features of the translational-sym-
metry analysis of 2D many-particle systems in a mag-
netic field, with rational magnetic flux per particle.
The new analysis resolves discrepancies between ear-
lier finite-system studies®® using periodic boundary
conditions and those using spherical geometry.’ In
particular, the g-fold ground-state degeneracy of finite
periodic systems is clearly seen as a group-theoretical
consequence of periodic boundary conditions without
physical implications. Significant reduction of the
computational task of studying finite systems is also
obtained, as is a correct classification of the excitation
spectrum.
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