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Spin Susceptibility of the Two-Dimensional Electron Gas with Open Fermi Surface
under Magnetic Field
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Under perpendicular magnetic field, the spin susceptibility of a noninteracting two-dimensional
electron gas with open Fermi surface shows a novel behavior due to the orbital effect. It exhibits a
series of peaks at wave vectors which obey a quantized nesting condition. When the field increases,
each of these peaks becomes in turn the absolute maximum. Their magnitude diverges logarithmi-
cally at low temperature. We discuss some experimental consequences in actual anisotropic metals.
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A rapidly growing number of papers examine the
properties of the two-dimensional (2D) electron gas
under magnetic field, either in the presence of impuri-
ties or in the presence of a periodic lattice potential.
The reason is, of course, the study of the quantized
Hall effect. ' The vast majority of papers so far have
dealt with isotropic 2D systems. However, the 2D an-
isotropic electron gas, such as can be found experi-
mentally in weakly coupled chain systems, has specif-
ic properties under magnetic field which deserve more
attention. Prominent among them is the possibility of
open Fermi surfaces, which result in a qualitative
change of the quasiclassical motion of the electron
wave packet. The occurrence of quasiparallel sheets of
the Fermi surface also leads to the instability of the
normal Fermi ground state versus formation of spin-
or charge-density waves. The purpose of this Letter is
to describe a spectacular consequence of the orbital ef-
fect of the magnetic field on the staggered static 2D
spin susceptibility Xo(Q,H, T) of the noninteracting
electron gas with open Fermi surface. There is a
characteristic area in the problem. This is the zero-
field area between one sheet of the Fermi surface and
the other sheet when it is translated by Q (Fig. 1).
When a perpendicular field H is applied, the Fermi
surface is destroyed but the susceptibility has maxima
which correspond to integer values of this zero-field
area in units of the area quantum in momentum space
Ao= 2meH.

In quasi-1D conductors of the tetramethyl-
tetraselenafulvalenium family [(TMTSF)zX], the me-
tallic phase stable in zero field can be destroyed by a
field of order 3—4 T perpendicular to the most-
conducting planes, and a spin-density wave (SDW)
phase appears. Gor'kov and Lebed gave the first
theoretical analysis of this transition. However, the
observed field-induced SDW phase has a complex
structure of subphases.

By considering a field-dependent SDW wave vector,
we were able to account for this structure. ' The de-
tailed investigation of Xo(Q,H, T) discussed here fully
confirms our interpretation. As already pointed out,

the Hall effect in the (TMTSF)zX family exhibits pla-

teaus which are reminiscent of the quantized Hall ef-
fect. The results described here are relevant to the
understanding of these plateaus.

Let us consider a 2D electron gas with an open Fer-
mi surface and a dispersion relation which is linearized
in the direction a of largest conductivity:

«+(t&+ tj, )/v
Tl:lb

FIG. 1. Open Fermi surface of a quasi-1D electron gas
(solid curves). In zero field, the best nesting vector Q con-
nects the inflection points of the two sheets (Ref. 3). It
leaves an area 3, the size of which is characterized by tb',

between one sheet of the Fermi surface and the other sheet
translated by Q (dashed curve). In a field, the susceptibility
is maximum when this zero-field area is quantized in terms
of A 0 = 2meH.

a periodic function: «i (ki b + 2m)
= «i(kib). The amplitude of «i is assumed to be
small compared to vkF. Linearity in the kll dispersion
is approximate but it can be shown that deviations
from linearity can be accounted for by higher-order
harmonics in t i.' " We now look for the wave-

vector —dependent susceptibility Xo(Q,H, T), where Q
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is written as Q= (2k„+ q~~, q~). In the mixed representation which is appropriate in the presence of a magnetic
field H = (0, O, H), Xo is written as

Xa(Q, H, T) = T g Jt (dk, /2') Jtdx G++(ice„,k, , O,x)G (io)„,k, —q, ,x, 0), (2)

where G++ (G ) propagates an electron (a hole) with longitudinal wave vector k„(—kF —q, ~). With the
Landau gauge A= (O,Hx, 0), one has

sgno)„co„G++= .
" exp—

IV
—ikF x + —T~ (k~b —eHbx)I

(cu„x ) 0), (3)

2w dp f ~ dx/xT I
Xo(Q,H, T) = J Jl . exp iq~~x+ [T~(p —eHbx)+ T (p —q b —eHbx)

4n bu o 2m d sinhx xT eHb v

—Tg (p) —Tg (p —q ~ b ) ] + exp Ix —x}, (4)

with T~(p) =I t(p')dp' and xT ——u/2mT. We have set ka=h =c =1. d= I/2ykF, where y is the Euler constant.
0

We turn now to the analysis of this susceptibility First we show that it exhibits maxima for quantized values of
the wave vector.

In the presence of a field, there is a characteristic length xo ——1/eHb, which for an open surface plays the role of a
cyclotron radius. The oscillatory factor T~ in Eq. (4) has a spatial wavelength of A. =2mxo. xo(Q, H, T) is max-
imum if there is a condition of phase coherence in the integrand, namely, exp(iq ~,

A. ) = 1, so that

q ~~

= neHb = n/xo with n integer.

This condition has a simple physical meaning. Let us introduce A, the zero-field area between one sheet of the
Fermi surface and the other sheet translated by Q (Fig. 1). A = 27rq ~~/b, so that A = nAo, where Ao ——2meH is the
area quantum in reciprocal space. The susceptibility is maximum, every time that A is quantized

In order to make this point more quantitative, we have performed numerical calculations of Xo(Q, H, T) for two
kinds of Fermi surfaces. First, we use the dispersion relation t~ (p) = —2tb cosp which, in zero field, leads to per-
fect nesting, i.e., Xo diverges logarithmically at low T for Q= (2kF, m/b). For this dispersion relation, the field-
dependent susceptibility is

Xo(Q,H, T) =
Jt„& cos(2vy) Jo(2z siny) dy/r

sinhy r'

with v= q~~xo, z = (4tb/eHub) cos(q~b/2), and r =x~/2xo. Figure 2 shows the evolution of Xo(Q,H T) when a
field is applied. It clearly shows several novel features. As expected from the considerations above, it exhibits rel-
ative maxima, the positions of which are strictly quantized. The distance between maxima increases proportionally
with the field as found in Eq. (5). We have checked that each maximum of the susceptibility diverges logarithmi-
cally at low T. But despite this new structure of relative maxima in a field, the absolute maximum is always located
at (2kF, m/b ).

New results occur if the dispersion relation does not lead to perfect nesting. We took the dispersion relation
t~ (p) = —2tb cosp —2tb cos(2p), the second term being the first correction to perfect nesting. For such a disper-
sion, the zero-field susceptibility is maximum for a noncommensurate nesting vector. But the maximum no longer
diverges at lo~ T. We have computed the susceptibility in the presence of the field. We find

Xo(Q,H T) = Jj i . J~ cos(2vy —2z siny cosp —2z' sin2y cos2p),2mbu «~&a sinhy r o 27r

with z = (4tb/eHub) cos(q~b/2) and z'= (2tb/ eHub) cos(qj b). As in the previous case, Xo(Q,H;T) exhibits a
series of maxima, the abscissas of which are still quantized: q ~~

= neHb. Moreover, the absolute maximum appears
at a field-dependent wave vector Q(H) with q~~ =noeHb (Figs. 3 and 4). We summarize below the essential
features of this new behavior.

At a given field, there is a main series of maxima; their positions Q(H) are close to the zero fieldcontinuous line-
of maxima which corresponds to the condition that the two sheets of the Fermi surface are tangent. The maxima
deviate from this line when the field increases. This series is shown by arrows and labeled by quantum number n

in Fig. 3. In this figure, the absolute maximum is labeled by no= 2. When the field is varied, each of these peaks
becomes in turn the absolute maximum as shown in Fig. 4. For each value of the field, we have looked for the abso-
lute maximum of Xo(Q,H, T). In Fig. 5, the latter is plotted as function of the field. It is a succession of segments
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characterized by successive values of the quantum
number no. The wave vector jumps at the transition
field between each segment.

For open Fermi surface, it is possible to define a
"cyclotron" frequency and thus a characteristic energy
of the magnetic field: E, =co, = v/xo ——evbH. Figure
5 shows that small quantum numbers no are reached
when E, is of the same order of magnitude as tb', the
characteristic energy which describes deviation from
perfect nesting. This shows that lattice periodicity has
dramatic consequences on the orbital effect at much
smaller fields than in isotropic lattices.

Figure 3 shows other relative maxima which never
become absolute whatever the field. They correspond
to a less good nesting of the Fermi sheets.

We have shown that each maximum diverges loga-
rithmically at low T. The minima are nearly constant in
temperature since they are mainly determined by the

FIG. 2. X,(Q,H, T) vs Q in the case r&'=0, E,/r&=0. 4,
T/tb ——1/50m = 0.00637. It exhibits peaks at quantized
values of the longitudinal wave vector q~~

= neHb, but the
absolute maximum still stays at the zero-field best nesting
vector (2kF, rr/b). Inset: susceptibility in lower field and
higher temperature, E,/tb = 0.08, T/tq = 1/57r = 0.0637.

n-)

q)~ =-N=

4 q//in tb/Units

FIG. 3. Xo(Q,H, T) vs Q in the case rb'/r, = 0.1,
E,/rl, ' = 1.158, T/tq' = 1/407r = 0.007 96. It exhibits a main
series of peaks labeled by quantum numbers n. The abso-
lute maximum in this case is labeled by no= 2.

FIG. 4. (a) The envelope of Xo in a case where no=1
(E,/tb'= 1.368). (b) Projection of Fig. 3 along the direction
q j on the qt = 7r/6 plane. The different ridges of
Xo(Q,H, T) are now superimposed on the same plane and
the envelope shows the main series of peaks. The abscissa
of the absolute maximum characterized by no= 2 increases
linearly with the field until the peak no= 1 becomes in turn
the absolute maximum. (c) At a lower field (E,/rq'= 0.947),
the peak labeled by no=3 is the main one. We have
checked with a smaller spacing that the shape around each
maximum is quadratic at finite temperature.
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FIG. 5. Absolute maximum of Xo(Q, H, T) as a function
of 1/0 (scale is in units of tt,'/E, ). It is a succession of seg-
ments characterized by successive values of the quantum
number no. At the transition fields between different values
of no, the wave vector jumps discontinuously (tb'/tt, =0.1,
T/ tt,

' = I/40m. ) .

cutoff. Thus the "contrast" of the structure that we
have found increases at low T as expected from Eq.
(4). At T=0 and when H goes to zero, Xp(Q, H, T)
exhibits a fine structure made of an infinity of loga-
rithmically divergent peaks. The restoration of the
logarithmic divergence for each maximum can be qual-
itatively understood in the following way: In zero
field, the susceptibility Xp(qadi, qi, T) of the 2D elec-
tron gas involves two degrees of freedom, the two
components of the wave vector which have a continu-
ous set of eigenvalues. In a field, the wave vector is
no longer a good quantum number. Because of quan-
tization of orbits, there is a discrete set of eigenvalues.
For each value of n, there remains only one degree of
freedom so that Xp(n, qi, H, T) recovers the charac-
teristic 1D logarithmic divergence. Finally, we have
shown that the structure described in this paper
remains from T = 0 K up to temperatures such that
E,/kaT & 2m. In the same way, if there is a mean free
path for electron motion, due to impurities, the struc-
ture in the maxima remains as long as co, v & 1, where
v is the collision time.

The effect of a small 3D coupling of conducting
sheets can be studied by taking into account a disper-
sion relation

t, (k, c ) = —2t, cos(k, c ) —2t,' cos(2k, c )

in the third direction. We have shown that the quan-
tized structure of the susceptibility remains in the
domain of wave vectors (qadi, qi, q, ) where q, is close
to the zero-field best-nesting vector, as long as

E, & t,'.
Our results on Xp(Q, H, T) have strong consequences

on the phase diagram of the quasi-2D interacting an-
isotropic electron gas, as can be seen from Stoner's cri-
terion ' or from a microscopic Landau expansion. '
The critical line of the metal-SDW transition is given
by Xp(Q, H, T) = I/I, ~here I is the effective interac-
tion constant. As seen from Fig. 5, in a real system
with metallic ground state in zero field, a cascade of
field-induced phase transitions necessarily occurs,
since each peak diverges logarithmically at low T. The
transition line is second order. It is a succession of
segments, each characterized by a quantum number
which also labels the SDW phase at lower T. Our work
proves that the quantization condition holds already on
the transition line in the (TMTSF)2X compounds.
The meaning of that condition in the ordered phase is
the following: The size of the pocket of carriers is
such that it contains an-integer number of Landau lev-
els. The transition between SDW phases is a first-
order one, due to the jump of the nesting vector.

In conclusion, we have proved that under magnetic
field, the susceptibility of an electron gas with open
Fermi surface exhibits a new and rich structure
governed by quantization of nesting of the Fermi sur-
face.
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