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Broken Symmetries in a one-Dimensional Half-Filled Band with Arbitrarily
Long-Range Coulomb Interactions
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The nature of the ground-state broken symmetry in a one-dimensional half-filled band with arbi-
trarily long-range Coulomb interactions between electrons is shown to be precisely given by two
simple inequalities involving the Coulomb parameters. It is further shown that non-2kF periodicity
may occur if the first of these inequalities is violated.
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Despite considerable recent interest in broken sym-
metries in quasi-one-dimensional systems with
electron-electron interactions, definitive results have
been obtained only for short-range Coulomb forces. '

Importantly, these investigations also indicate that
the use of effective short-range interactions to approxi-
mate long-range forces does not yield the correct
ground-state broken symmetry, although it may yield
reasonable values for the optical gap or spin density. 5

The few previously available results on long-range
interactions have been for the Pariser-Parr-Pople
models with the specific Coulomb interaction parame-
ters thought to be applicable to (the gas phase of)
linear polyenes. Here the results of approximate calcu-
lations for long chains are mutually contradictory,
while exact diagonalizations5 on short chains cannot
yield the correct answer if the range of the interactions
is greater than half the system size. Thus the accurate
calculation of the effects of long-range interactions
remains a central issue.

In the present Letter, we report a novel sharp result
on broken symmetries in a one-dimensional half-filled
band with long-range Coulomb interactions. Our

result is valid for arbitrary range and magnitudes of pos-
itive Coulomb parameters. Thus, in the particular case
of polyacetylene, the solid-state screening effects that
may reduce the effective range of the Coulomb in-
teractions in going from the gas to the condensed
phase do not invalidate our approach. The class of
models covered includes both those favored by chem-
ists (e.g. , Pariser-Parr-Pople models) and those
favored by physicists (extended Peierls-Hubbard
models and even the Su-Schrieffer-Heeger limit).
Furthermore, our approach provides an intuitive pic-
ture of the mechanism for broken symmetry in the
presence of correlations. This is significant, for no
reasoning analogous to that given by Peierls for the
pure electron-phonon coupling limit has previously ex-
isted. Explicitly, since there is no single-particle
(band) picture for nonzero correlations, and thus no
kF, why should 2kF broken-symmetry states be ex-
pected to occur at a11? Finally, our result represents an
important benchmark against which the predictions of
all approximate methods can be tested.

The models that we consider are described by the
Hamiltonian 0= H&, + H, „where

0, , = X,. [to+a(y, —
, y&+)]( cc, +, +c;+& c, )+px, q n, , (la)

and

(lb)

Here c; (c, ) creates (annihilates) an electron with
spin o(t, )) at site-i, n; =c, c, , and n, =g n;

We work in the half-filled band limit and impose the
restriction U & Vq & V2 ». . . 0. We have not in-
cluded kinetic and potential energy terms correspond-
ing to the intra site (q, ) and inter site (y, —y;+ &) pho-
nons, since we are interested in unconditional broken
symmetries, i.e. , those existing in the limits
u, p 0+. For 0, , =0, whether the 2kF intra site
charge-density wave (CDW) or the 2kF inter site
bond-order wave (BOW) dominates is determined
simply by the relative magnitudes9 of o. and p. When
H, ,&0, we show here that, for arbitrarily long-range
V&, the ground state is either a 2kF CDW or a 2kF

I BOW' provided that the potential is downward con-
vex, i.e., for all j,

VJ+)+ VJ ) ~2'. (2)
Note that models having V, =O for j &j,„do satisfy
(2) and thus our result also applies to short-range (i.e.,
screened) Coulomb interactions, provided that the
nonzero VJ satisfy (2). If (2) does not hold, then a
CDW with periodicity other than 2kF can be the
ground state, The competition between the 2k„CDW
and BOW is decided by a second inequality,

X, V2i+t & 2 U+ ~, I'2, . (3)

For a smaller left-hand side, the 2kF BOW is the dom-
inant broken symmetry, while for a smaller right-hand
side, the 2kF CDW dominates. Near the equality, the
two broken symmetries can coexist. It is both remark-
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able and significant that the inequality (3), which is a
sharp result, is consistent with both classical chemical
studies" (in which electron hopping effects are ig-
nored) and with more recent physical studies focusing
on the weakly correlated limit. ~2

Our demonstration of these assertions proceeds in
three separate steps. First, we discuss a real-space
mechanism for broken symmetry and show how the
ground state of (1) at Ht, ——0 determines the dom-
inant broken symmetry when H~, &0. This argument
is heuristic, based on symmetry considerations of
real-space configurations. In the second step, we
derive the explicit ground-state solution to (1) at
H&, = 0. This result represents a significant extension
to finite U (for the half-filled band) of results previ-
ously'3 obtained for U = ~ (for arbitrary band filling).
Finally, we present exact numerical results on finite
(N = 10) chains to illustrate our results.

To describe the real-space mechanism' of broken
symmetry, we note that all many-electron real-space
configurations are diagonal or off-diagonal with respect
to the discrete symmetry operation (reflection through
or between sites) that is lost when the symmetry is
broken. Broken symmetry is unconditional only if
pairs of configurations which are off diagonal w-ith

respect to the symmetry operator, but otherwise
equivalent, make unequal contributions to the wave
function, i.e. , resonance (in the chemical sense) is im-
perfect. The overall barrier to resonance can be deter-
mined by inspection of only the extreme pair that
favors the broken symmetry most strongly, ' as each
member of the pair can be reached by N applications
(where N is the system size) of H, , on the other, and
all other configurations lie along the paths so generat-
ed. For H, , =0, resonance is imperfect in infinite
systems because of the infinite lengths of these paths.
H, ,eO enhances (decreases) the barrier to resonance,
depending on whether matrix elements of H, , of the
intermediate configurations along all paths are higher
(lower) in energy than those of the extreme pair.
Thus we arrive at our first crucial result: Electron-
electron interactions will enhance a given broken sym-
metry if the appropriate extreme configurations form
the ground state of H, , (i.e. , the ground state of H at

E(. . .112011.. . ) & E(. . .12. . .1. . .0. . . 1. . .).
(ii) For any N2, configurations in which the order of

the 2-0 alternation is preserved are lower in energy
than the others; i.e.,

E (. . .11. . .20. . .11. . .20. . .)
& E(. . .11. . .20. . .11. . .02. . . ),

if Eq. (2) is valid.
(iii) Irrespective of N2 and of the number of 1's in-

tervening between two (2-0) pairs, the energy is al-
ways lowered by bringing the pairs closer if Eq. (2) is

H, , = 0). If any other configurations form the ground
state of H, „the broken symmetry will (for some cou-
pling strength) be destroyed.

Simple inspection (or reference to previous stud-
ies'2) shows that the (two) extreme configurations for
the 2kF CDW are LCDw C] t C, t C3l C3t IG) and

RcDw, which has sites 2, 4, . . . doubly occupied. In
terms of site occupancies, these configurations are
LcDw = 2020. . . and RcDw = 0202. . .; for H&, = 0,
LcDw and RCDw are eigenstates of H and have equal
energies. For the 2kF BOW, the two (single-valence
bond) extreme configurations are L sow (c t t c2 t

ct 1 c2t ) (c3t c4t c3 t c4t ) 10) and Raow
which perfect spin pairings occur between sites 2 and
3, 4 and 5, etc. Since for H&, =0 the energies are in-
dependent of spins, the energies of both Liow and

are given by the configuration . . .1111.. . ,
with all sites singly occupied. The final result of our
real-space arguments is thus that the dominant broken
symmetry of H is a 2k„CDW (BOW) if the configura-
tion. . .2020. . . (. . .1111.. .) is the ground state for
Hg, =0.

Fortunately, we can study this ground-state question
precisely and prove the following theorem: If inequali-
ty (2) holds, then the ground state of H, , is the
configuration. . .2020. . . if —, U + g, V2, & X, V2J +, ,
whereas it is. . .1111.. . if —,

' U + QJ V2, & gj V2J+, .
The detailed proof of this theorem is lengthy and

will be presented elsewhere, but a sketch should suf-
fice to motivate its validity. For finite U, we need to
consider configurations with all possible numbers of
double occupancies N2, where 0~N2~N/2. As a
first step, we consider only the class of configurations
with a fixed X2 and determine the lowest-energy
configurations within this class. All configurations are
represented by sequences involving only the integers
0, 1, and 2 (denoting site occupancies) and the
number of 0's and 2's are equal. Extending a counting
technique developed by Hubbard'3 for the U = ~ (so
that only 0's and 1's occur) arbitrary-band-filling prob-
lem, we prove the following in sequential steps:

(i) For any N2, configurations with each 2 next to a
0 are lower in energy than those with separated 2's and
0 s, provided that Eq. (2) is valid; i.e. , in an obvious
notation,

valid; i.e.,

E(. . .11202011. . . ) & E(. . .112012011.. . )

& E(. . .1120112011.. . ) &. . .

(iv) The last condition remains true even when we
consider an arbitrary number of (2-0) pairs, so that the
lowest-energy configuration for fixed N2 is the one in
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which all 2's and 0's alternate consecutively, as long as VJ's are downward convex.
Since we now know the unique configuration of lowest energy for N2 double occupancies, let us denote its ener-

gy by E(N2). Our stated result will follow if we can prove that, when —,
' U+ g V2J ) g V2J+ t, E (0) ~ E (N2) for

all 0 & Nz ~ N/2, whereas when —,
' U+ g V2J & X V2J+ t, E(N/2) ~ E(N2) for all N2. We can calculate E(Nz)

by inspection:
2N Nj —1

E(N2) =N2U+ [N + ( —1)J(2N2 —j)]V~+N V~+ (N/2) Vzt2,
j =2N2+1

for 0 ~ Nz ~ N/4, while

(4)

N —2N2

E(N2) =N2U+ X [N+ ( —1)J(2N2 —j)]Vj+
j =N —2N2+1

[N + ( —1)j(4N2 —N) ] Vi

+ —, V~t2[N + ( —1) (4N2 —N) ], (5)
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for N/4 ~ N2~ N/2, where in both (5) and (6) the
last terms, which are irrelevant for infinite systems,
are indicated in anticipation of our later study of finite
rings. Note that (5) and (6) give the correct limit
values E(0) = N(Vt+ V2+ V3+. . . ) and E(N/2)

,' NU+ 2N (—V2+V4+ V6+. . .), respectively. Sim-

ple algebraic manipulations now show that if the left-
hand side of Eq. (3) is smaller, so that
E(0) & E (N/2), then E(0) & E (N2) for all N2 pro
vided that Eq. (2) is true. Similarly, if the right-hand

a(aE) =SE(U, V, ) —b,E(0), (6)

where

bE(U, V~) = E(U, Vj, t;;+t ——to[1+ ( —1)'8])
—E(U, Vi, t;, +t ——tp)

and E(U, V&, t, ;+t) is the total electronic energy. Thus

! side of (3) is smaller, then E(N/2) & E(N2) follows
if Eq. (2) is true. This proves our theorem regarding
the exact ground state at H1, = 0.

To illustrate these results, we next present exact nu-
merical calculations for a periodic ring of N = 10 sites.
To demonstrate an enhanced 2kF BOW, we study
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FIG. 1. 6 (AE) (solid line, zero indicated on the left axis)

and hS (dashed line, zero indicated on the right axis) vs V2

for U= 10 and Vt= 7, in units of to. Equation (3) predicts
that beyond V2 ——2 (indicated by an arrow on the graph) the
CDW should disappear and the BOW should appear. The
nonzero intersite electron-phonon coupling causes the BOW
to appear slightly before V2, and in the region 1.7 & V2
& 2.1, both the BOW and CDW coexist. Note that when

the plotted quantities fall below zero, there is no tendency
toward the corresponding broken symmetry.

~ ~ ~ ~ ~ ~ ~ Q
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FIG. 2. 6 (AE) (solid line, zero indicated on the left axis)
and AS„(dashed line, zero indicated on the right axis) vs V3

for U = 10, VI = 7, and V2 = 3. The arrow indicates the criti-
cal V3 (=1) beyond which the CDW should appear and the
BOW disappear. The persistence of the BOW beyond V3 is
in part due to the nonzero electron-phonon coupling used in
the measurement of A(AE).
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FIG. 3. The structure factor S(q) vs qa/7r for &=10,

Vt = 7, and V2 = 3.6 and 4.0. S (q) always peaks at
q = 2kF= 7r/««0 & V2 & Vz =3.5 but shifts to smaller q
as V2 increases beyond V2.

/5. (/5, E ) ) 0 implies that the Coulomb interactions
enhance the 2kF BOW. To investigate the 2kF CDW,
we evaluate the structure factor

S(q) = S = W 'X, , (n, n, +() e""

at q =2k„=m/a and study AS =S i, (U;Vi)—S i, (0), noting that b, S ) 0 implies enhanced 2kF
CDW.

The inequalities (2) and (3) are independent of the
cutoff in V~ and N, with the only finite-size effect be-
ing that the last term on the left-hand side of Eq. (3)
must have a coefficient of —,'. Altogether we have
studied more than fifty different combinations of
U, Vt, . . . , V5 (the maximum physical V, for the
% =10 system) and verified our predictions in each
case; we focus here on three illustrative examples.
First, we take U ( 2Vi, and V~ =0 for j «3. For
V2=0, we have an enhanced 2kF CDW according to
Eqs. (2) and (3), while for V2 & Vt ——,

'
U, we predict

an enhanced BOW. We have plotted both A(AE) and
ES for this case—we take U = 10, V, = 7 (where
to = 1), so that Vz = 2—in Fig. 1, and we see that nu-
merical results agree with this completely. Second,
with V&=0 for j ~4, we choose values of U, V~, and
V2 such that we have an enhanced 2kF BOW initially.
We now increase V3 from 0 and expect that for
V3 ) 2 U + V2 —V&, the system transforms to an
enhanced 2kF CDW. Again, the results in Fig. 2 re-
flect this behavior. Finally, if we take U & 2 V&, V~ = 0
for j ~ 3, and increase V2 until V2 ) —,

'
V&, we violate

the downward convexity condition (2) and expect a
non-2k„CDW. In Fig. 3 we plot S(q) from Eq. (7)
and show that when (2) is violated it indeed peaks at
q ~2kF = m./a. We have deliberately chosen such large
values of U, V, , etc. to illustrate the validity of our
results away from the perturbative regime. "

Finally, our results have two immediate and impor-
tant consequences for attempts to model real quasi-
one-dimensional systems. First, we predict bond alter-
nation in the infinite polyene for both the Ohno and
Mataga-Nishimoto parametrizations of the Pariser-
Parr-Pople Hamiltonian, in contradiction to previous
approximate theories6 (Ref. 8 investigates only the
Mataga-Nishimoto parameters and predicts bond alter-
nation). Second, our inequalities explain why use of
effective short-range interactions can lead to incorrect
results for ground-state broken symmetry; namely, in-
clusion of a single additional Vi can cause a switch
from CDW to BOW or vice versa. Extensions of our
analysis to mixed-stack charge-transfer solids (with

V& s alternating in sign and alternating site energies)
and to other band fillings are currently under investi-
gation.
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